Blog

Discover how we are pushing the boundaries in the world of quantum computing

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
technical
All
October 31, 2024
We’re working on bringing the power of quantum computing – and quantum machine learning - to particle physics

Particle accelerators like the LHC take serious computing power. Often on the bleeding-edge of computing technology, accelerator projects sometimes even drive innovations in computing. In fact, while there is some controversy over exactly where the world wide web was created, it is often attributed to Tim Berners-Lee at CERN, who developed it to meet the demand for automated information-sharing between scientists in universities and institutes around the world.

With annual data generated by accelerators in excess of exabytes (a billion gigabytes), tens of millions of lines of code written to support the experiments, and incredibly demanding hardware requirements, it’s no surprise that the High Energy Physics community is interested in quantum computing, which offers real solutions to some of their hardest problems. Furthermore, the HEP community is well-positioned to support the early stages of technological development: with budgets in the 10s of billions per year and tens of thousands of scientists and engineers working on accelerator and computational physics, this is a ripe industry for quantum computing to tap.

As the authors of this paper stated: “[Quantum Computing] encompasses several defining characteristics that are of particular interest to experimental HEP: the potential for quantum speed-up in processing time, sensitivity to sources of correlations in data, and increased expressivity of quantum systems... Experiments running on high-luminosity accelerators need faster algorithms; identification and reconstruction algorithms need to capture correlations in signals; simulation and inference tools need to express and calculate functions that are classically intractable”

The authors go on to state: “Within the existing data reconstruction and analysis paradigm, access to algorithms that exhibit quantum speed-ups would revolutionize the simulation of large-scale quantum systems and the processing of data from complex experimental set-ups. This would enable a new generation of precision measurements to probe deeper into the nature of the universe. Existing measurements may contain the signatures of underlying quantum correlations or other sources of new physics that are inaccessible to classical analysis techniques. Quantum algorithms that leverage these properties could potentially extract more information from a given dataset than classical algorithms.”

Our scientists have been working with a team at DESY, one of the world’s leading accelerator centers, to bring the power of quantum computing to particle physics. DESY, short for Deutsches Elektronen-Synchrotron, is a national research center for fundamental science located in Hamburg and Zeuthen, where the Center for Quantum Technologies and Applications (CQTA) is based.  DESY operates, develops, and constructs particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research. DESY employs about 3,000 staff members from more than 60 nations, and is part of the worldwide computer network to store and analyze the enormous flood of data that is produced by the LHC in Geneva.

In a recent paper, our scientists collaborated with scientists from DESY, the Leiden Institute of Advanced Computer Science (LIACS), and Northeastern University to explore using a generative quantum machine learning model, called a “quantum Boltzmann machine” to untangle data from CERN’s LHC.

The goal was to learn probability distributions relevant to high energy physics better than the corresponding classical models. The data specifically contains “particle jet events”, which describe how colliders collect data about the subatomic particles generated during the experiments.

In some cases the quantum Boltzmann machine was indeed better, compared to a classical Boltzmann machine. The team is analyzed when and why this happens, understanding better how to apply these new quantum tools in this research setting. The team also studied the effect of the data encoding into a quantum state, noting that it can have a decisive effect on the training performance. Especially enticing is that the quantum Boltzmann machine is efficiently trainable, which our scientists showed in a recent paper published in Nature Communications Physics.  

events
All
October 28, 2024
SC24: The International Conference for High Performance Computing, Networking, Storage, and Analysis

Find the Quantinuum team at this year’s SC24 conference from November 17th – 22nd in Atlanta, Georgia. Meet our team at Booth #4351 to discover how Quantinuum is bridging the gap between quantum computing and high-performance compute with leading industry partners.

Schedule time to meet with us

The Quantinuum team will be participating various events, panels and poster sessions to showcase our quantum computing technologies. Join us at the below sessions: 

Monday, Nov 18, 8:00 - 8:25pm EST

Panel: KAUST booth 1031

Nash Palaniswamy, Quantinuum’s CCO, will join fellow quantum vendors and KAUST partners for the "Quantum First" panel to discuss advancements in quantum technology.

Monday, Nov 18, 9:00 - 11:59pm EST

Beowulf Bash: World of Coca-Cola

This year, we are proudly sponsoring the Beowulf Bash, a unique event organized to bring the HPC community together for a night of unique entertainment!

Tuesday, Nov 19, 2:40 - 3:00pm EST

Presentation: Accelerating Hybrid Quantum-Classical Computing with Microsoft & Quantinuum

Josh Savory, Director Cloud & Hardware Offerings, and Simon McAdams, Chemistry Product Lead, will showcase Quantinuum and Microsoft's latest breakthroughs, including the creation of the most reliable logical qubits on record and a comprehensive and unique hybrid workflow designed to tackle real chemistry problems, seamlessly integrating cloud HPC, AI, and quantum computing.

Wednesday, Nov 20, 3:30 – 5:00pm EST

Panel: Educating for a Hybrid Future: Bridging the Gap between High-Performance and Quantum Computing

Vincent Anandraj, Quantinuum’s Director of Global Ecosystem and Strategic Alliances, will moderate this panel which brings together experts from leading supercomputing centers and the quantum computing industry, including PSC, Leibniz Supercomputing Centre, IQM Quantum Computers, NVIDIA, and National Research Foundation.

Thursday, Nov 21, 11:00 – 11:30am EST 

Presentation: Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation

Pablo Andres-Martinez​, Research Scientist at Quantinuum, will present research done in collaboration with HSBC, where the team applied quantum methods to fraud detection.

technical
All
September 20, 2024
Quantinuum achieves moonshot years ahead of schedule, demonstrating fault-tolerant high-fidelity teleportation of a logical qubit

While it sounds like a gadget from Star Trek, teleportation is real – and it is happening at Quantinuum. In a new paper published in Science, our researchers moved a quantum state from one place to another without physically moving it through space - and they accomplished this feat with fault-tolerance and excellent fidelity. This is an important milestone for the whole quantum computing community and the latest example of Quantinuum achieving critical milestones years ahead of expectations. 

While it seems exotic, teleportation is a critical piece of technology needed for full scale fault-tolerant quantum computing, and it is used widely in algorithm and architecture design. In addition to being essential on its own, teleportation has historically been used to demonstrate a high level of system maturity. The protocol requires multiple qubits, high-fidelity state-preparation, single-qubit operations, entangling operations, mid-circuit measurement, and conditional operations, making it an excellent system-level benchmark.

Our team was motivated to do this work by the US Government Intelligence Advance Research Projects Activity (IARPA), who set a challenge to perform high fidelity teleportation with the goal of advancing the state of science in universal fault-tolerant quantum computing. IARPA further specified that the entanglement and teleportation protocols must also maintain fault-tolerance, a key property that keeps errors local and correctable. 

These ambitious goals required developing highly complex systems, protocols, and other infrastructure to enable exquisite control and operation of quantum-mechanical hardware. We are proud to have accomplished these goals ahead of schedule, demonstrating the flexibility, performance, and power of Quantinuum’s Quantum Charge Coupled Device (QCCD) architecture.

Quantinuum’s demonstration marks the first time that an arbitrary quantum state has been teleported at the logical level (using a quantum error correcting code). This means that instead of teleporting the quantum state of a single physical qubit we have teleported the quantum information encoded in an entangled set of physical qubits, known as a logical qubit. In other words, the collective state of a bunch of qubits is teleported from one set of physical qubits to another set of physical qubits. This is, in a sense, a lot closer to what you see in Star Trek – they teleport the state of a big collection of atoms at once. Except for the small detail of coming up with a pile of matter with which to reconstruct a human body...

This is also the first demonstration of a fully fault-tolerant version of the state teleportation circuit using real-time quantum error correction (QEC), decoding mid-circuit measurement of syndromes and implementing corrections during the protocol. It is critical for computers to be able to catch and correct any errors that happen along the way, and this is not something other groups have managed to do in any robust sense. In addition, our team achieved the result with high fidelity (97.5%±0.2%), providing a powerful demonstration of the quality of our H2 quantum processor, Powered by Honeywell.

Our team also tried several variations of logical teleportation circuits, using both transversal gates and lattice surgery protocols, thanks to the flexibility of our QCCD architecture. This marks the first demonstration of lattice surgery performed on a QEC code.

Lattice surgery is a strategy for implementing logical gates that requires only 2D nearest-neighbor interactions, making it especially useful for architectures whose qubit locations are fixed, such as superconducting architectures. QCCD and other technologies that do not have fixed qubit positioning might employ this method, another method, or some mixture. We are fortunate that our QCCD architecture allows us to explore the use of different logical gating options so that we can optimize our choices for experimental realities.

While the teleportation demonstration is the big result, sometimes it is the behind-the-scenes technology advancements that make the big differences. The experiments in this paper were designed at the logical level using an internally developed logical-level programming language dubbed Simple Logical Representation (SLR). This is yet another marker of our system’s maturity – we are no longer programming at the physical level but have instead moved up one “layer of abstraction”. Someday, all quantum algorithms will need to be run on the logical level with rounds of quantum error correction. This is a markedly different state than most present experiments, which are run on the physical level without quantum error correction. It is also worth noting that these results were generated using the software stack available to any user of Quantinuum’s H-Series quantum computers, and these experiments were run alongside customer jobs – underlining that these results are commercial performance, not hero data on a bespoke system.

Ironically, a key element in this work is our ability to move our qubits through space the “normal” way - this capacity gives us all-to-all connectivity, which was essential for some of the QEC protocols used in the complex task of fault-tolerant logical teleportation. We recently demonstrated solutions to the sorting problem and wiring problem in a new 2D grid trap, which will be essential as we scale up our devices.

technical
All
September 18, 2024
“Talking quantum circuits”
The central question that pre-occupies our team has been:

“How can quantum structures and quantum computers contribute to the effectiveness of AI?”

In previous work we have made notable advances in answering this question, and this article is based on our most recent work in the new papers [arXiv:2406.17583, arXiv:2408.06061], and most notably the experiment in [arXiv:2409.08777].

This article is one of a series that we will be publishing alongside further advances – advances that are accelerated by access to the most powerful quantum computers available.

Large language Models (LLMs) such as ChatGPT are having an impact on society across many walks of life. However, as users have become more familiar with this new technology, they have also become increasingly aware of deep-seated and systemic problems that come with AI systems built around LLM’s.

The primary problem with LLMs is that nobody knows how they work - as inscrutable “black boxes” they aren’t “interpretable”, meaning we can’t reliably or efficiently control or predict their behavior. This is unacceptable in many situations. In addition, Modern LLMs are incredibly expensive to build and run, costing serious – and potentially unsustainable –amounts of power to train and use. This is why more and more organizations, governments, and regulators are insisting on solutions.  

But how can we find these solutions, when we don’t fully understand what we are dealing with now?1

At Quantinuum, we have been working on natural language processing (NLP) using quantum computers for some time now. We are excited to have recently carried out experiments [arXiv: 2409.08777] which demonstrate not only how it is possible to train a model for a quantum computer in a scalable manner, but also how to do this in a way that is interpretable for us. Moreover, we have promising theoretical indications of the usefulness of quantum computers for interpretable NLP [arXiv:2408.06061].

In order to better understand why this could be the case, one needs to understand the ways in which meanings compose together throughout a story or narrative. Our work towards capturing them in a new model of language, which we call DisCoCirc, is reported on extensively in this previous blog post from 2023.

In new work referred to in this article, we embrace “compositional interpretability” as proposed in [arXiv:2406.17583] as a solution to the problems that plague current AI. In brief, compositional interpretability boils down to being able to assign a human friendly meaning, such as natural language, to the components of a model, and then being able to understand how they fit together2.

A problem currently inherent to quantum machine learning is that of being able to train at scale. We avoid this by making use of “compositional generalization”. This means we train small, on classical computers, and then at test time evaluate much larger examples on a quantum computer. There now exist quantum computers which are impossible to simulate classically. To train models for such computers, it seems that compositional generalization currently provides the only credible path.

1. Text as circuits

DisCoCirc is a circuit-based model for natural language that turns arbitrary text into “text circuits” [arXiv:1904.03478, arXiv:2301.10595, arXiv:2311.17892]. When we say that arbitrary text becomes ‘text-circuits’ we are converting the lines of text, which live in one dimension, into text-circuits which live in two-dimensions. These dimensions are the entities of the text versus the events in time.

To see how that works, consider the following story. In the beginning there is Alex and Beau. Alex meets Beau. Later, Chris shows up, and Beau marries Chris. Alex then kicks Beau.

The content of this story can be represented as the following circuit:

Figure 1. A text circuit for a simple story, involving three actors Alex, Beau andChris, who have a number of interactions with one another, making up a story –the circuit is to be read from top to bottom.
2. From text circuits to quantum circuits

Such a text circuit represents how the ‘actors’ in it interact with each other, and how their states evolve by doing so. Initially, we know nothing about Alex and Beau. Once Alex meets Beau, we know something about Alex and Beau’s interaction, then Beau marries Chris, and then Alex kicks Beau, so we know quite a bit more about all three, and in particular, how they relate to each other.

Let’s now take those circuits to be quantum circuits.

In the last section we will elaborate more why this could be a very good choice. For now it’s ok to understand that we simply follow the current paradigm of using vectors for meanings, in exactly the same way that this works in LLMs. Moreover, if we then also want to faithfully represent the compositional structure in language3, we can rely on theorem 5.49 from our book Picturing Quantum Processes, which informally can be stated as follows:

If the manner in which meanings of words (represented by vectors) compose obeys linguistic structure, then those vectors compose in exactly the same way as quantum systems compose.4

In short, a quantum implementation enables us to embrace compositional interpretability, as defined in our recent paper [arXiv:2406.17583].

3. Text circuits on our quantum computer

So, what have we done? And what does it mean?

We implemented a “question-answering” experiment on our Quantinuum quantum computers, for text circuits as described above. We know from our new paper [arXiv:2408.06061] that this is very hard to do on a classical computer due to the fact that as the size of the texts get bigger they very quickly become unrealistic to even try to do this on a classical computer, however powerful it might be. This is worth emphasizing. The experiment we have completed would scale exponentially using classical computers – to the point where the approach becomes intractable.

The experiment consisted of teaching (or training) the quantum computer to answer a question about a story, where both the story and question are presented as text-circuits. To test our model, we created longer stories in the same style as those used in training and questioned these. In our experiment, our stories were about people moving around, and we questioned the quantum computer about who was moving in the same direction at the end of the stories. A harder alternative one could imagine, would be having a murder mystery story and then asking the computer who was the murderer.

And remember - the training in our experiment constitutes the assigning of quantum states and gates to words that occur in the text.

Figure 2. The question-answering task for the language of text circuits as implementable on a quantum computer from [arXiv: 2409.08777]. Above the dotted line is the text we consider. Below are upside-down text circuits which constitute the question we ask. The boxes with words are parameterized as quantum gates. The diagram on the left constitutes one possible answer to the question, and the one on the right the other. Can you figure out what the text is and what the questions are?
4. Compositional generalization

The major reason for our excitement is that the training of our circuits enjoys compositional generalization. That is, we can do the training on small-scale ordinary computers, and do the testing, or asking the important questions, on quantum computers that can operate in ways not possible classically. Figure 4 shows how, despite only being trained on stories with up to 8 actors, the test accuracy remains high, even for much longer stories involving up to 30 actors.

Training large circuits directly in quantum machine learning, leads to difficulties which in many cases undo the potential advantage. Critically - compositional generalization allows us to bypass these issues.

Figure 3. A simplified plot from [arXiv:2409.08777] showing that increasing the sizes of circuits when testing doesn’t affect the accuracy, after training small-scale on ordinary computers. The number of actors correlates with the text size. H1-1 is the name of the Quantinuum quantum computer that was used.
5. Real-world comparison: ChatGPT

We can compare the results of our experiment on a quantum computer, to the success of a classical LLM ChatGPT (GPT-4) when asked the same questions.

What we are considering here is a story about a collection of characters that walk in a number of different directions, and sometimes follow each other. These are just some initial test examples, but it does show that this kind of reasoning is not particularly easy for LLMs.

The input to ChatGPT was:

What we got from ChatGPT:

Can you see where ChatGPT went wrong?

ChatGPT’s score (in terms of accuracy) oscillated around 50% (equivalent to random guessing). Our text circuits consistently outperformed ChatGPT on these tasks. Future work in this area would involve looking at prompt engineering – for example how the phrasing of the instructions can affect the output, and therefore the overall score.

Of course, we note that ChatGPT and other LLM’s will issue new versions that may or may not be marginally better with ‘question-answering’ tasks, and we also note that our own work may become far more effective as quantum computers rapidly become more powerful.

6. What’s next?

We have now turned our attention to work that will show that using vectors to represent meaning and requiring compositional interpretability for natural language takes us mathematically natively into the quantum formalism. This does not mean that there doesn't exist an efficient classical method for solving specific tasks, and it may be hard to prove traditional hardness results whenever there is some machine learning involved. This could be something we might have to come to terms with, just as in classical machine learning.

At Quantinuum we possess the most powerful quantum computers currently available. Our recently published roadmap is going to deliver more computationally powerful quantum computers in the short and medium term, as we extend our lead and push towards universal, fault tolerant quantum computers by the end of the decade. We expect to show even better (and larger scale) results when implementing our work on those machines. In short, we foresee a period of rapid innovation as powerful quantum computers that cannot be classically simulated become more readily available. This will likely be disruptive, as more and more use cases, including ones that we might not be currently thinking about, come into play.

Interestingly and intriguingly, we are also pioneering the use of powerful quantum computers in a hybrid system that has been described as a ‘quantum supercomputer’ where quantum computers, HPC and AI work together in an integrated fashion and look forward to using these systems to advance our work in language processing that can help solve the problem with LLM’s that we highlighted at the start of this article. 

1 And where do we go next, when we don’t even understand what we are dealing with now? On previous occasions in the history of science and technology, when efficient models without a clear interpretation have been developed, such as the Babylonian lunar theory or Ptolemy’s model of epicycles, these initially highly successful technologies vanished, making way for something else.

2 Note that our conception of compositionality is more general than the usual one adopted in linguistics, which is due to Frege. A discussion can be found in [arXiv: 2110.05327].

3 For example, using pregroups here as linguistic structure, which are the cups and caps of PQP.

4 That is, using the tensor product of the corresponding vector spaces.

technical
All
September 17, 2024
Technical perspective: By the end of the decade, we will deliver universal, fault-tolerant quantum computing

By Dr. Harry Buhrman, Chief Scientist for Algorithms and Innovation, and Dr. Chris Langer, Fellow

This week, we confirm what has been implied by the rapid pace of our recent technical progress as we reveal a major acceleration in our hardware road map. By the end of the decade, our accelerated hardware roadmap will deliver a fully fault-tolerant and universal quantum computer capable of executing millions of operations on hundreds of logical qubits. 

The next major milestone on our accelerated roadmap is Quantinuum Helios™, Powered by Honeywell, a device that will definitively push beyond classical capabilities in 2025. That sets us on a path to our fifth-generation system, Quantinuum Apollo™, a machine that delivers scientific advantage and a commercial tipping point this decade.

What is Apollo?

We are committed to continually advancing the capabilities of our hardware over prior generations, and Apollo makes good on that promise. It will offer:

  • thousands of physical qubits
  • physical error rates less than 10-4
  • All of our most competitive features: all-to-all connectivity, low crosstalk, mid-circuit measurement and qubit re-use
  • Conditional logic
  • Real-time classical co-compute
  • Physical variable angle 1 qubit and 2 qubit gates
  • Hundreds of logical qubits
  • Logical error rates better than 10-6 with analysis based on recent literature estimating as low as 10-10

By leveraging our all-to-all connectivity and low error rates, we expect to enjoy significant efficiency gains in terms of fault-tolerance, including single-shot error correction (which saves time) and high-rate and high-distance Quantum Error Correction (QEC) codes (which mean more logical qubits, with stronger error correction capabilities, can be made from a smaller number of physical qubits). 

Studies of several efficient QEC codes already suggest we can enjoy logical error rates much lower than our target 10-6 – we may even be able to reach 10-10, which enables exploration of even more complex problems of both industrial and scientific interest.

Error correcting code exploration is only just beginning – we anticipate discoveries of even more efficient codes. As new codes are developed, Apollo will be able to accommodate them, thanks to our flexible high-fidelity architecture. The bottom line is that Apollo promises fault-tolerant quantum advantage sooner, with fewer resources.

Like all our computers, Apollo is based on the quantum charged coupled device (QCCD) architecture. Here, each qubit’s information is stored in the atomic states of a single ion. Laser beams are applied to the qubits to perform operations such as gates, initialization, and measurement. The lasers are applied to individual qubits or co-located qubit pairs in dedicated operation zones. Qubits are held in place using electromagnetic fields generated by our ion trap chip. We move the qubits around in space by dynamically changing the voltages applied to the chip. Through an alternating sequence of qubit rearrangements via movement followed by quantum operations, arbitrary circuits with arbitrary connectivity can be executed.

The ion trap chip in Apollo will host a 2D array of trapping locations. It will be fabricated using standard CMOS processing technology and controlled using standard CMOS electronics. The 2D grid architecture enables fast and scalable qubit rearrangement and quantum operations – a critical competitive advantage. The Apollo architecture is scalable to the significantly larger systems we plan to deliver in the next decade.

What is Apollo good for?

Apollo’s scaling of very stable physical qubits and native high-fidelity gates, together with our advanced error correcting and fault tolerant techniques will establish a quantum computer that can perform tasks that do not run (efficiently) on any classical computer. We already had a first glimpse of this in our recent work sampling the output of random quantum circuits on H2, where we performed 100x better than competitors who performed the same task while using 30,000x less power than a classical supercomputer. But with Apollo we will travel into uncharted territory.

The flexibility to use either thousands of qubits for shorter computations (up to 10k gates) or hundreds of qubits for longer computations (from 1 million to 1 billion gates) make Apollo a versatile machine with unprecedented quantum computational power. We expect the first application areas will be in scientific discovery; particularly the simulation of quantum systems. While this may sound academic, this is how all new material discovery begins and its value should not be understated. This era will lead to discoveries in materials science, high-temperature superconductivity, complex magnetic systems, phase transitions, and high energy physics, among other things.

In general, Apollo will advance the field of physics to new heights while we start to see the first glimmers of distinct progress in chemistry and biology. For some of these applications, users will employ Apollo in a mode where it offers thousands of qubits for relatively short computations; e.g. exploring the magnetism of materials. At other times, users may want to employ significantly longer computations for applications like chemistry or topological data analysis. 

But there is more on the horizon. Carefully crafted AI models that interact seamlessly with Apollo will be able to squeeze all the “quantum juice” out and generate data that was hitherto unavailable to mankind. We anticipate using this data to further the field of AI itself, as it can be used as training data. 

The era of scientific (quantum) discovery and exploration will inevitably lead to commercial value. Apollo will be the centerpiece of this commercial tipping point where use-cases will build on the value of scientific discovery and support highly innovative commercially viable products. 

Very interestingly, we will uncover applications that we are currently unaware of. As is always the case with disruptive new technology, Apollo will run currently unknown use-cases and applications that will make perfect sense once we see them. We are eager to co-develop these with our customers in our unique co-creation program.

How do we get there?

Today, System Model H2 is our most advanced commercial quantum computer, providing 56 physical qubits with physical two-qubit gate errors less than 10-3. System Model H2, like all our systems, is based on the QCCD architecture.

Starting from where we are today, our roadmap progresses through two additional machines prior to Apollo. The Quantinuum Helios™ system, which we are releasing in 2025, will offer around 100 physical qubits with two-qubit gate errors less than 5x10-4. In addition to expanded qubit count and better errors, Helios makes two departures from H2. First, Helios will use 137Ba+ qubits in contrast to the 171Yb+ qubits used in our H1 and H2 systems. This change enables lower two-qubit gate errors and less complex laser systems with lower cost. Second, for the first time in a commercial system, Helios will use junction-based qubit routing. The result will be a “twice-as-good" system: Helios will offer roughly 2x more qubits with 2x lower two-qubit gate errors while operating more than 2x faster than our 56-qubit H2 system.

After Helios we will introduce Quantinuum Sol™, our first commercially available 2D-grid-based quantum computer. Sol will offer hundreds of physical qubits with two-qubit gate errors less than 2x10-4, operating approximately 2x faster than Helios. Sol being a fully 2D-grid architecture is the scalability launching point for the significant size increase planned for Apollo.

Opportunity for early value creation discovery in Helios and Sol

Thanks to Sol’s low error rates, users will be able to execute circuits with up to 10,000 quantum operations. The usefulness of Helios and Sol may be extended with a combination of quantum error detection (QED) and quantum error mitigation (QEM). For example, the [[k+2, k, 2]] iceberg code is a light-weight QED code that encodes k+2 physical qubits into k logical qubits and only uses an additional 2 ancilla qubits. This low-overhead code is well-suited for Helios and Sol because it offers the non-Clifford variable angle entangling ZZ-gate directly without the overhead of magic state distillation. The errors Iceberg fails to detect are already ~10x lower than our physical errors, and by applying a modest run-time overhead to discard detected failures, the effective error in the computation can be further reduced. Combining QED with QEM, a ~10x reduction in the effective error may be possible while maintaining run-time overhead at modest levels and below that of full-blown QEC.

Why accelerate our roadmap now?

Our new roadmap is an acceleration over what we were previously planning. The benefits of this are obvious: Apollo brings the commercial tipping point sooner than we previously thought possible. This acceleration is made possible by a set of recent breakthroughs.

First, we solved the “wiring problem”: we demonstrated that trap chip control is scalable using our novel center-to-left-right (C2LR) protocol and broadcasting shared control signals to multiple electrodes. This demonstration of qubit rearrangement in a 2D geometry marks the most advanced ion trap built, containing approximately 40 junctions. This trap was deployed to 3 different testbeds in 2 different cities and operated with 2 different collections of dual-ion-species, and all 3 cases were a success. These demonstrations showed that the footprint of the most complex parts of the trap control stay constant as the number of qubits scales up. This gives us the confidence that Sol, with approximately 100 junctions, will be a success.

Second, we continue to reduce our two-qubit physical gate errors. Today, H1 and H2 have two-qubit gate errors less than 1x10-3 across all pairs of qubits. This is the best in the industry and is a key ingredient in our record >2 million quantum volume. Our systems are the most benchmarked in the industry, and we stand by our data - making it all publicly available. Recently, we observed an 8x10-4 two-qubit gate error in our Helios development test stand in 137Ba+, and we’ve seen even better error rates in other testbeds. We are well on the path to meeting the 5x10-4 spec in Helios next year.

Third, the all-to-all connectivity offered by our systems enables highly efficient QEC codes. In Microsoft’s recent demonstration, our H2 system with 56 physical qubits was used to generate 12 logical qubits at distance 4. This work demonstrated several experiments, including repeated rounds of error correction where the error in the final result was ~10x lower than the physical circuit baseline.

In conclusion, through a combination of advances in hardware readiness and QEC, we have line-of-sight to Apollo by the end of the decade, a fully fault-tolerant quantum advantaged machine. This will be a commercial tipping point: ushering in an era of scientific discovery in physics, materials, chemistry, and more. Along the way, users will have the opportunity to discover new enabling use cases through quantum error detection and mitigation in Helios and Sol.

Quantinuum has the best quantum computers today and is on the path to offering fault-tolerant useful quantum computation by the end of the decade.

technical
All
September 10, 2024
Quantinuum accelerates the path to Universal Fully Fault-Tolerant Quantum Computing; supports Microsoft’s AI and quantum-powered compute platform and “the path to a Quantum Supercomputer”

Quantinuum is uniquely known for, and has always put a premium on, demonstrating rather than merely promising breakthroughs in quantum computing. 

When we unveiled the first H-Series quantum computer in 2020, not only did we pioneer the world-leading quantum processors, but we also went the extra mile. We included industry leading comprehensive benchmarking to ensure that any expert could independently verify our results. Since then, our computers have maintained the lead against all competitors in performance and transparency. Today our System Model H2 quantum computer with 56 qubits is the most powerful quantum computer available for industry and scientific research – and the most benchmarked. 

More recently, in a period where we upgraded our H2 system from 32 to 56 qubits and demonstrated the scalability of our QCCD architecture, we also hit a quantum volume of over two million, and announced that we had achieved “three 9’s” fidelity, enabling real gains in fault-tolerance – which we proved within months as we demonstrated the most reliable logical qubits in the world with our partner Microsoft

We don’t just promise what the future might look like; we demonstrate it.

Today, at Quantum World Congress, we shared how recent developments by our integrated hardware and software teams have, yet again, accelerated our technology roadmap. It is with the confidence of what we’ve already demonstrated that we can uniquely announce that by the end of this decade Quantinuum will achieve universal fully fault-tolerant quantum computing, built on foundations such as a universal fault-tolerant gate set, high fidelity physical qubits uniquely capable of supporting reliable logical qubits, and a fully-scalable architecture.

Quantinuum's hardware development roadmap to achieve universal, fully fault-tolerant quantum computing

We also demonstrated, with Microsoft, what rapid acceleration looks like with the creation of 12 highly reliable logical qubits – tripling the number from just a few months ago. Among other demonstrations, we supported Microsoft to create the first ever chemistry simulation using reliable logical qubits combined with Artificial Intelligence (AI) and High-Performance Computing (HPC), producing results within chemical accuracy. This is a critical demonstration of what Microsoft has called “the path to a Quantum Supercomputer”. 

Quantinuum’s H-Series quantum computers, Powered by Honeywell, were among the first devices made available via Microsoft Azure, where they remain available today. Building on this, we are excited to share that Quantinuum and Microsoft have completed integration of Quantinuum’s InQuanto™ computational quantum chemistry software package with Azure Quantum Elements, the AI enabled generative chemistry platform. The integration mentioned above is accessible to customers participating in a private preview of Azure Quantum Elements, which can be requested from Microsoft and Quantinuum.  

We created a short video on the importance of logical qubits, which you can see here:

These demonstrations show that we have the tools to drive progress towards scientific and industrial advantage in the coming years. Together, we’re demonstrating how quantum computing may be applied to some of humanity’s most pressing problems, many of which are likely only to be solved with the combination of key technologies like AI, HPC, and quantum computing. 

Our credible roadmap draws a direct line from today to hundreds of logical qubits - at which point quantum computing, possibly combined with AI and HPC, will outperform classical computing for a range of scientific problems. 

“The collaboration between Quantinuum and Microsoft has established a crucial step forward for the industry and demonstrated a critical milestone on the path to hybrid classical-quantum supercomputing capable of transforming scientific discovery.” – Dr. Krysta Svore – Technical Fellow and VP of Advanced Quantum Development for Microsoft Azure Quantum

What we revealed today underlines the accelerating pace of development. It is now clear that enterprises need to be ready to take advantage of the progress we can see coming in the next business cycle.

Why now?

The industry consensus is that the latter half of this decade will be critical for quantum computing, prompting many companies to develop roadmaps signalling their path toward error corrected qubits. In their entirety, Quantinuum’s technical and scientific advances accelerate the quantum computing industry, and as we have shown today, reveal a path to universal fault-tolerance much earlier than expected.

Grounded in our prior demonstrations, we now have sufficient visibility into an accelerated timeline for a highly credible hardware roadmap, making now the time to release an update. This provides organizations all over the world with a way to plan, reliably, for universal fully fault-tolerant quantum computing. We have shown how we will scale to more physical qubits at fidelities that support lower error rates (made possible by QEC), with the capacity for “universality” at the logical level. “Universality” is non-negotiable when making good on the promise of quantum computing: if your quantum computer isn’t universal everything you do can be efficiently reproduced on a classical computer

“Our proven history of driving technical acceleration, as well as the confidence that globally renowned partners such as Microsoft have in us, means that this is the industry’s most bankable roadmap to universal fully fault-tolerant quantum computing,” said Dr. Raj Hazra, Quantinuum’s CEO.

Where we go from here?

Before the end of the decade, our quantum computers will have thousands of physical qubits, hundreds of logical qubits with error rates less than 10-6, and the full machinery required for universality and fault-tolerance – truly making good on the promise of quantum computing. 

Quantinuum has a proven history of achieving our technical goals. This is evidenced by our leadership in hardware, software, and the ecosystem of developer tools that make quantum computing accessible. Our leadership in quantum volume and fidelity, our consistent cadence of breakthrough publications, and our collaboration with enterprises such as Microsoft, showcases our commitment to pushing the boundaries of what is possible. 

We are now making an even stronger public commitment to deliver on our roadmap, ushering the industry toward the era of universal fully fault-tolerant quantum computing this decade. We have all the machinery in place for fault-tolerance with error rates around 10-6, meaning we will be able to run circuits that are millions of gates deep – putting us on a trajectory for scientific quantum advantage, and beyond.