Blog

Discover how we are pushing the boundaries in the world of quantum computing

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
events
All
September 15, 2025
Quantum World Congress 2025

From September 16th – 18th, Quantum World Congress (QWC) will bring together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.

Quantinuum is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. Join our quantum experts for the below sessions and at Booth #27 to discuss the latest on Quantinuum Systems, the world’s highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.

Wednesday, September 17th

Keynote with Quantinuum's CEO, Dr. Rajeeb Hazra
9:00 – 9:20am ET | Main Stage

At QWC 2024, Quantinuum’s President & CEO, Dr. Rajeeb “Raj” Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, join Raj on the main stage to discover the progress we’ve made over the last year in advancing quantum computing on both commercial and technical fronts and be the first to hear exciting insights on what’s to come from Quantinuum.

Panel Session: Policy Priorities for Responsible Quantum and AI
1:00 – 1:30pm ET | Maplewood Hall

As part of the Track Sessions on Government & Security, Quantinuum’s Director of Government Relations, Ryan McKenney,  will discuss “Policy Priorities for Responsible Quantum and AI” with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.

Fireside Chat: Establishing a Pro-Innovation Regulatory Framework
4:00 – 4:30pm ET | Vault Theater

During the Track Session on Industry Advancement, Quantinuum’s Chief Legal Officer, Kaniah Konkoly-Thege,  and Director of Government Relations, Ryan McKenney,  will take the stage to discuss the importance of “Establishing a Pro-Innovation Regulatory Framework”.

technical
All
September 15, 2025
Quantum gravity in the lab

In the world of physics, ideas can lie dormant for decades before revealing their true power. What begins as a quiet paper in an academic journal can eventually reshape our understanding of the universe itself.

In 1993, nestled deep in the halls of Yale University, physicist Subir Sachdev and his graduate student Jinwu Ye stumbled upon such an idea. Their work, originally aimed at unraveling the mysteries of “spin fluids”, would go on to ignite one of the most surprising and profound connections in modern physics—a bridge between the strange behavior of quantum materials and the warped spacetime of black holes.

Two decades after the paper was published, it would be pulled into the orbit of a radically different domain: quantum gravity. Thanks to work by renowned physicist Alexei Kitaev in 2015, the model found new life as a testing ground for the mind-bending theory of holography—the idea that the universe we live in might be a projection, from a lower-dimensional reality.

Holography is an exotic approach to understanding reality where scientists use holograms to describe higher dimensional systems in one less dimension. So, if our world is 3+1 dimensional (3 spatial directions plus time), there exists a 2+1, or 3-dimensional description of it. In the words of Leonard Susskind, a pioneer in quantum holography, "the three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface."  

The “SYK” model, as it is known today, is now considered a quintessential framework for studying strongly correlated quantum phenomena, which occur in everything from superconductors to strange metals—and even in black holes. In fact, The SYK model has also been used to study one of physics’ true final frontiers, quantum gravity, with the authors of the paper calling it “a paradigmatic model for quantum gravity in the lab.”  

The SYK model involves Majorana fermions, a type of particle that is its own antiparticle. A key feature of the model is that these fermions are all-to-all connected, leading to strong correlations. This connectivity makes the model particularly challenging to simulate on classical computers, where such correlations are difficult to capture. Our quantum computers, however, natively support all-to-all connectivity making them a natural fit for studying the SYK model.

Now, 10 years after Kitaev’s watershed lectures, we’ve made new progress in studying the SYK model. In a new paper, we’ve completed the largest ever SYK study on a quantum computer. By exploiting our system’s native high fidelity and all-to-all connectivity, as well as our scientific team’s deep expertise across many disciplines, we were able to study the SYK model at a scale three times larger than the previous best experimental attempt.

While this work does not exceed classical techniques, it is very close to the classical state-of-the-art. The biggest ever classical study was done on 64 fermions, while our recent result, run on our smallest processor (System Model H1), included 24 fermions. Modelling 24 fermions costs us only 12 qubits (plus one ancilla) making it clear that we can quickly scale these studies: our System Model H2 supports 56 qubits (or ~100 fermions), and Helios, which is coming online this year, will have over 90 qubits (or ~180 fermions).

However, working with the SYK model takes more than just qubits. The SYK model has a complex Hamiltonian that is difficult to work with when encoded on a computer—quantum or classical. Studying the real-time dynamics of the SYK model means first representing the initial state on the qubits, then evolving it properly in time according to an intricate set of rules that determine the outcome. This means deep circuits (many circuit operations), which demand very high fidelity, or else an error will occur before the computation finishes.

Our cross-disciplinary team worked to ensure that we could pull off such a large simulation on a relatively small quantum processor, laying the groundwork for quantum advantage in this field.

First, the team adopted a randomized quantum algorithm called TETRIS to run the simulation. By using random sampling, among other methods, the TETRIS algorithm allows one to compute the time evolution of a system without the pernicious discretization errors or sizable overheads that plague other approaches. TETRIS is particularly suited to simulating the SYK model because with a high level of disorder in the material, simulating the SYK Hamiltonian means averaging over many random Hamiltonians. With TETRIS, one generates random circuits to compute evolution (even with a deterministic Hamiltonian). Therefore, when applying TETRIS on SYK, for every shot one can just generate a random instance of the Hamiltonain, and generate a random circuit on TETRIS at the same time. This simple approach enables less gate counts required per shot, meaning users can run more shots, naturally mitigating noise.

In addition, the team “sparsified” the SYK model, which means “pruning” the fermion interactions to reduce the complexity while still maintaining its crucial features. By combining sparsification and the TETRIS algorithm, the team was able to significantly reduce the circuit complexity, allowing it to be run on our machine with high fidelity.

They didn’t stop there. The team also proposed two new noise mitigation techniques, ensuring that they could run circuits deep enough without devolving entirely into noise. The two techniques both worked quite well, and the team was able to show that their algorithm, combined with the noise mitigation, performed significantly better and delivered more accurate results. The perfect agreement between the circuit results and the true theoretical results is a remarkable feat coming from a co-design effort between algorithms and hardware.

As we scale to larger systems, we come closer than ever to realizing quantum gravity in the lab, and thus, answering some of science’s biggest questions.

technical
All
September 9, 2025
Preparation is everything

At Quantinuum, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.

A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or “state prep,” is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.

Recently, our algorithm teams have been tackling this challenge from all angles. We’ve published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.

In the first paper, our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.

To do this, our team investigated two different state prep methods. The first method uses Givens rotations, implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.

Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the “sparse state preparation” scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.

In the second paper, our team focused on state prep for materials simulation. Generally, it’s much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.

In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.

Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature – and approaches like this are what will allow us to perform the necessary studies to one day get us there.

Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the third paper, our team made fault-tolerant state preparation—the critical first step in any fault-tolerant algorithm—roughly twice as efficient. With our new “flag at origin” technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.

The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, we’ve figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.

On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our team’s work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystem—and is quite timely given our recent advances into true fault-tolerance.

This generality isn’t just applicable to different codes, it’s also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This “state diversity” is especially valuable when working with the best codes – codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.

From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.

partnership
All
August 28, 2025
Quantum Computing Joins the Next Frontier in Genomics
  • The Sanger Institute illustrates the value of quantum computing to genomics research
  • Quantinuum supports developments in a field that promises to deliver a profound and positive societal impact

Twenty-five years ago, scientists accomplished a task likened to a biological moonshot: the sequencing of the entire human genome.

The Human Genome Project revealed a complete human blueprint comprising around 3 billion base pairs, the chemical building blocks of DNA. It led to breakthrough medical treatments, scientific discoveries, and a new understanding of the biological functions of our body.

Thanks to technological advances in the quarter-century since, what took 13 years and cost $2.7 billion then can now be done in under 12 minutes for a few hundred dollars. Improved instruments such as next-generation sequencers and a better understanding of the human genome – including the availability of a “reference genome” – have aided progress, alongside enormous advances in algorithms and computing power.

But even today, some genomic challenges remain so complex that they stretch beyond the capabilities of the most powerful classical computers operating in isolation. This has sparked a bold search for new computational paradigms, and in particular, quantum computing.

Quantum Challenge: Accepted

The Wellcome Leap Quantum for Bio (Q4Bio) challenge is pioneering this new frontier. The program funds research to develop quantum algorithms that can overcome current computational bottlenecks. It aims to test the classical boundaries of computational genetics in the next 3-5 years.

One consortium – led by the University of Oxford and supported by prestigious partners including the Wellcome Sanger Institute, the Universities of Cambridge, Melbourne, and Kyiv Academic University – is taking a leading role.

“The overall goal of the team’s project is to perform a range of genomic processing tasks for the most complex and variable genomes and sequences – a task that can go beyond the capabilities of current classical computers” – Wellcome Sanger Institute press release, July 2025
Selecting Quantinuum

Earlier this year, the Sanger Institute selected Quantinuum as a technology partner in their bid to succeed in the Q4Bio challenge.

Our flagship quantum computer, System H2, has for many years led the field of commercially available systems for qubit fidelity and consistently holds the global record for Quantum Volume, currently benchmarked at 8,388,608 (223).

In this collaboration, the scientific research team can take advantage of Quantinuum’s full stack approach to technology development, including hardware, software, and deep expertise in quantum algorithm development.

“We were honored to be selected by the Sanger Institute to partner in tackling some of the most complex challenges in genomics. By bringing the world’s highest performing quantum computers to this collaboration, we will help the team push the limits of genomics research with quantum algorithms and open new possibilities for health and medical science.” – Rajeeb Hazra, President and CEO of Quantinuum
Quantum for Biology

At the heart of this endeavor, the consortium has announced a bold central mission for the coming year: to encode and process an entire genome using a quantum computer. This achievement would be a potential world-first and provide evidence for quantum computing’s readiness for tackling real-world use cases.

Their chosen genome, the bacteriophage PhiX174, carries symbolic weight, as its sequencing earned Fred Sanger his second Nobel Prize for Chemistry in 1980. Successfully encoding this genome quantum mechanically would represent a significant milestone for both genomics and quantum computing.

Bacteriophage PhiX174, published under a Creative Commons License https://commons.wikimedia.org/wiki/File:Phi_X_174.png

Sooner than many expect, quantum computing may play an essential role in tackling genomic challenges at the very frontier of human health. The Sanger Institute and Quantinuum’s partnership reminds us that we may soon reach an important step forward in human health research – one that could change medicine and computational biology as dramatically as the original Human Genome Project did a quarter-century ago.

“Quantum computational biology has long inspired us at Quantinuum, as it has the potential to transform global health and empower people everywhere to lead longer, healthier, and more dignified lives.” – Ilyas Khan, Founder and Chief Product Officer of Quantinuum

Glossary of terms: Understanding how quantum computing supports complex genomic research


Term Definition
Algorithms
A set of rules or processes for performing calculations or solving computational problems.
Classical Computing Computing technology based on binary information storage (bits represented as 0 or 1).
DNA Sequence The exact order of nucleotides (A, T, C, G) within a DNA molecule.
Genome The complete set of genetic material (DNA) present in an organism.
Graph-based Genome (Sequence Graph) A non-linear network representation of genomic sequences capturing the diversity and relationships among multiple genomes.
High Performance Compute (HPC) Advanced classical computing systems designed for handling computationally intensive tasks, simulations, and data processing.
Pangenome A collection of multiple genome sequences representing genetic diversity within a population or species.
Precision Medicine Tailored medical treatments based on individual genetic, environmental, and lifestyle factors.
Quantinuum The world’s largest quantum computing company, Quantinuum systems lead the world for the rigorous Quantum Volume benchmark and were the first to offer commercial access to highly reliable “Level 2 – resilient” quantum computing.
Quantum Bit (Qubit) Basic unit of quantum information, which unlike classical bits, can exist in multiple states simultaneously (superposition).
Quantum Computing Computing approach using quantum-mechanical phenomena (e.g., superposition, entanglement, interference) for enhanced problem-solving capabilities.
Quantum Pangenomics Interdisciplinary field combining quantum computing with genomics to address computational challenges in analyzing genetic data and pangenomes.
Quantum Volume A specific test of a quantum computer’s performance on complex circuits. The higher the quantum volume the more powerful the system. Quantinuum’s 56-qubit System Model H2 achieved a record quantum volume of 8,388,608 in May 2025.
Quantum Superposition A fundamental quantum phenomenon in which particles can simultaneously exist in multiple states, enabling complex computational tasks.
Sequence Mapping Determining how sequences align or correspond within a larger genomic reference or graph.
Wellcome Leap Quantum for Bio (Q4Bio) Initiative funding research combining quantum computing and biological sciences to address computational challenges.
Wellcome Sanger Institute The Sanger Institute tackles some of the most difficult challenges in genomic research.
events
All
August 26, 2025
IEEE Quantum Week 2025

Every year, The IEEE International Conference on Quantum Computing and Engineering – or IEEE Quantum Week – brings together engineers, scientists, researchers, students, and others to learn about advancements in quantum computing.

This year’s conference from August 31st – September 5th, is being held in Albuquerque, New Mexico, a burgeoning epicenter for quantum technology innovation and the home to our new location that will support ongoing collaborative efforts to advance the photonics technologies critical to furthering our product development.

Throughout IEEE Quantum Week, our quantum experts will be on-site to share insights on upgrades to our hardware, enhancements to our software stack, our path to error correction, and more.

Meet our team at Booth #507 and join the below sessions to discover how Quantinuum is forging the path to fault-tolerant quantum computing with our integrated full-stack.

September 2nd

Quantum Software Workshop
Quantum Software 2.1: Open Problems, New Ideas, and Paths to Scale
1:15 – 2:10pm MDT | Mesilla

We recently shared the details of our new software stack for our next-generation systems, including Helios (launching in 2025). Quantinuum’s Agustín Borgna will deliver a lighting talk to introduce Guppy, our new, open-source programming language based on Python, one of the most popular general-use programming languages for classical computing.

September 3rd

PAN08: Progress and Platforms in the Era of Reliable Quantum Computing
1:00 – 2:30pm MDT | Apache

We are entering the era of reliable quantum computing. Across the industry, quantum hardware and software innovators are enabling this transformation by creating reliable logical qubits and building integrated technology stacks that span the application layer, middleware and hardware. Attendees will hear about current and near-term developments from Microsoft, Quantinuum and Atom Computing. They will also gain insights into challenges and potential solutions from across the ecosystem, learn about Microsoft’s qubit-virtualization system, and get a peek into future developments from Quantinuum and Microsoft.

BOF03: Exploring Distributed Quantum Simulators on Exa-scale HPC Systems
3:00 – 4:30pm MDT | Apache

The core agenda of the session is dedicated to addressing key technical and collaborative challenges in this rapidly evolving field. Discussions will concentrate on innovative algorithm design tailored for HPC environments, the development of sophisticated hybrid frameworks that seamlessly combine classical and quantum computational resources, and the crucial task of establishing robust performance benchmarks on large-scale CPU/GPU HPC infrastructures.

September 4th

PAN11: Real-time Quantum Error Correction: Achievements and Challenges
1:00 – 2:30pm MDT | La Cienega

This panel will explore the current state of real-time quantum error correction, identifying key challenges and opportunities as we move toward large-scale, fault-tolerant systems. Real-time decoding is a multi-layered challenge involving algorithms, software, compilation, and computational hardware that must work in tandem to meet the speed, accuracy, and scalability demands of FTQC. We will examine how these challenges manifest for multi-logical qubit operations, and discuss steps needed to extend the decoding infrastructure from intermediate-scale systems to full-scale quantum processors.

September 5th

Keynote by NVIDIA
8:00 – 9:30am MDT | Kiva Auditorium

During his keynote talk, NVIDIA’s Head of Quantum Computing Product, Sam Stanwyck, will detail our partnership to fast-track commercially scalable quantum supercomputers. Discover how Quantinuum and NVIDIA are pushing the boundaries to deliver on the power of hybrid quantum and classical compute – from integrating NVIDIA’s CUDA-Q Platform with access to Quantinuum’s industry-leading hardware to the recently announced NVIDIA Quantum Research Center (NVAQC).

Featured Research at the IEEE Poster Session:

Visible Photonic Component Development for Trapped-Ion Quantum Computing
September 2nd from 6:30 - 8:00pm MDT | September 3rd from 9:30 - 10:00am MDT | September 4th from 11:30 - 12:30pm MDT
Authors: Elliot Lehman, Molly Krogstad, Molly P. Andersen, Sara Cambell, Kirk Cook, Bryan DeBono, Christopher Ertsgaard, Azure Hansen, Duc Nguyen, Adam Ollanik, Daniel Ouellette, Michael Plascak, Justin T. Schultz, Johanna Zultak, Nicholas Boynton, Christopher DeRose,Michael Gehl, and Nicholas Karl

Scaling Up Trapped-Ion Quantum Processors with Integrated Photonics
September 2nd from 6:30 - 8:00pm MDT and 2:30 - 3:00pm MDT | September 4th from 9:30 - 10:00am MDT

Authors: Molly Andersen, Bryan DeBono, Sara Campbell, Kirk Cook, David Gaudiosi, Christopher Ertsgaard, Azure Hansen, Todd Klein, Molly Krogstad, Elliot Lehman, Gregory MacCabe, Duc Nguyen, Nhung Nguyen, Adam Ollanik, Daniel Ouellette, Brendan Paver, Michael Plascak, Justin Schultz and Johanna Zultak

Research Collaborations with the Local Ecosystem

In a partnership that is part of a long-standing relationship with Los Alamos National Laboratory, we have been working on new methods to make quantum computing operations more efficient, and ultimately, scalable.

Learn more in our Research Paper: Classical shadows with symmetries

Our teams collaborated with Sandia National Laboratories demonstrating our leadership in benchmarking. In this paper, we implemented a technique devised by researchers at Sandia to measure errors in mid-circuit measurement and reset. Understanding these errors helps us to reduce them while helping our customers understand what to expect while using our hardware.

Learn more in our Research Paper: Measuring error rates of mid-circuit measurements

technical
All
August 25, 2025
We’re not just catching up to classical computing, we’re evolving from it

From machine learning to quantum physics, tensor networks have been quietly powering the breakthroughs that will reshape our society. Originally developed by the legendary Nobel laureate Roger Penrose, they were first used to tackle esoteric problems in physics that were previously unsolvable.

Today, tensor networks have become indispensable in a huge number of fields, including both classical and quantum computing, where they are used everywhere from quantum error correction (QEC) decoding to quantum machine learning.

In this latest paper, we teamed up with luminaries from the University of British Columbia, California Institute of Technology, University of Jyväskylä, KBR Inc, NASA, Google Quantum AI, NVIDIA, JPMorgan Chase, the University of Sherbrooke, and Terra Quantum AG to provide a comprehensive overview of the use of tensor networks in quantum computing.

Standing on the shoulders of giants

Part of what drives our leadership in quantum computing is our commitment to building the best scientific team in the world. This is precisely why we hired Dr. Reza Haghshenas, one of the world’s leading experts in tensor networks, and a co-author on the paper.

Dr. Haghshenas has been researching tensor networks for over a decade across both academia and industry. Dr. Haghshenas did postdoctoral work under Professor Garnet Chan at Caltech, a leading figure in the use of tensor networks for quantum physics and chemistry.

“Working with Dr. Garnet Chan at Caltech was a formative experience for me”, remarked Dr. Haghshenas. “While there, I contributed to the development of quantum simulation algorithms and advanced classical methods like tensor networks to help interpret and simulate many-body physics.”

Since joining Quantinuum, Dr. Haghshenas has led projects that bring tensor network methods into direct collaboration with experimental hardware teams — exploring quantum magnetism on real quantum devices and helping demonstrate early signs of quantum advantage. He also contributes to widely used simulation tools like QUIMB, helping the broader research community access these methods.

Dr. Haghshenas’ work sits in a broad and vibrant ecosystem exploring novel uses of tensor networks. Collaborations with researchers like Dr. Chan at Caltech, and NVIDIA have brought GPU-accelerated tools to bear on the forefront of applying tensor networks to quantum chemistry, quantum physics, and quantum computing.

A powerful simulation tool

Of particular interest to those of us in quantum computing, the best methods (that we know of) for simulating quantum computers with classical computers rely on tensor networks. Tensor networks provide a nice way of representing the entanglement in a quantum algorithm and how it spreads, which is crucial but generally quite difficult for classical algorithms. In fact, it’s partly tensor networks’ ability to represent entanglement that makes them so powerful for quantum simulation. Importantly, it is our in-house expertise with tensor networks that makes us confident we are indeed moving past classical capabilities.

A theory of evolution

Tensor networks are not only crucial to cutting-edge simulation techniques.  At Quantinuum, we're working on understanding and implementing quantum versions of classical tensor network algorithms, from quantum matrix product states to holographic simulation methods. In doing this, we are leveraging decades of classical algorithm development to advance quantum computing.

A topic of growing interest is the role of tensor networks in QEC, particularly in a process known as decoding. QEC works by encoding information into an entangled state of multiple qubits and using syndrome measurements to detect errors. These measurements must then be decoded to identify the specific error and determine the appropriate correction. This decoding step is challenging—it must be both fast (within the qubit’s coherence time) and accurate (correctly identifying and fixing errors). Tensor networks are emerging as one of the most effective tools for tackling this task.

Looking forward (and backwards, and sideways...)

Tensor networks are more than just a powerful computational tool — they are a bridge between classical and quantum thinking. As this new paper shows, the community’s understanding of tensor networks has matured into a robust foundation for advancing quantum computing, touching everything from simulation and machine learning to error correction and circuit design.

At Quantinuum, we see this as an evolutionary step, not just in theory, but in practice. By collaborating with top minds across academia and industry, we're charting a path forward that builds on decades of classical progress while embracing the full potential of quantum mechanics. This transition is not only conceptual but algorithmic, advancing how we formulate and implement methods utilizing efficiently both classical and quantum computing. Tensor networks aren’t just helping us keep pace with classical computing; they’re helping us to transcend it.