By Dr. Harry Buhrman, Chief Scientist for Algorithms and Innovation, and Dr. Chris Langer, Fellow
This week, we confirm what has been implied by the rapid pace of our recent technical progress as we reveal a major acceleration in our hardware road map. By the end of the decade, our accelerated hardware roadmap will deliver a fully fault-tolerant and universal quantum computer capable of executing millions of operations on hundreds of logical qubits.
The next major milestone on our accelerated roadmap is Quantinuum Helios™, Powered by Honeywell, a device that will definitively push beyond classical capabilities in 2025. That sets us on a path to our fifth-generation system, Quantinuum Apollo™, a machine that delivers scientific advantage and a commercial tipping point this decade.
We are committed to continually advancing the capabilities of our hardware over prior generations, and Apollo makes good on that promise. It will offer:
By leveraging our all-to-all connectivity and low error rates, we expect to enjoy significant efficiency gains in terms of fault-tolerance, including single-shot error correction (which saves time) and high-rate and high-distance Quantum Error Correction (QEC) codes (which mean more logical qubits, with stronger error correction capabilities, can be made from a smaller number of physical qubits).
Studies of several efficient QEC codes already suggest we can enjoy logical error rates much lower than our target 10-6 – we may even be able to reach 10-10, which enables exploration of even more complex problems of both industrial and scientific interest.
Error correcting code exploration is only just beginning – we anticipate discoveries of even more efficient codes. As new codes are developed, Apollo will be able to accommodate them, thanks to our flexible high-fidelity architecture. The bottom line is that Apollo promises fault-tolerant quantum advantage sooner, with fewer resources.
Like all our computers, Apollo is based on the quantum charged coupled device (QCCD) architecture. Here, each qubit’s information is stored in the atomic states of a single ion. Laser beams are applied to the qubits to perform operations such as gates, initialization, and measurement. The lasers are applied to individual qubits or co-located qubit pairs in dedicated operation zones. Qubits are held in place using electromagnetic fields generated by our ion trap chip. We move the qubits around in space by dynamically changing the voltages applied to the chip. Through an alternating sequence of qubit rearrangements via movement followed by quantum operations, arbitrary circuits with arbitrary connectivity can be executed.
The ion trap chip in Apollo will host a 2D array of trapping locations. It will be fabricated using standard CMOS processing technology and controlled using standard CMOS electronics. The 2D grid architecture enables fast and scalable qubit rearrangement and quantum operations – a critical competitive advantage. The Apollo architecture is scalable to the significantly larger systems we plan to deliver in the next decade.
Apollo’s scaling of very stable physical qubits and native high-fidelity gates, together with our advanced error correcting and fault tolerant techniques will establish a quantum computer that can perform tasks that do not run (efficiently) on any classical computer. We already had a first glimpse of this in our recent work sampling the output of random quantum circuits on H2, where we performed 100x better than competitors who performed the same task while using 30,000x less power than a classical supercomputer. But with Apollo we will travel into uncharted territory.
The flexibility to use either thousands of qubits for shorter computations (up to 10k gates) or hundreds of qubits for longer computations (from 1 million to 1 billion gates) make Apollo a versatile machine with unprecedented quantum computational power. We expect the first application areas will be in scientific discovery; particularly the simulation of quantum systems. While this may sound academic, this is how all new material discovery begins and its value should not be understated. This era will lead to discoveries in materials science, high-temperature superconductivity, complex magnetic systems, phase transitions, and high energy physics, among other things.
In general, Apollo will advance the field of physics to new heights while we start to see the first glimmers of distinct progress in chemistry and biology. For some of these applications, users will employ Apollo in a mode where it offers thousands of qubits for relatively short computations; e.g. exploring the magnetism of materials. At other times, users may want to employ significantly longer computations for applications like chemistry or topological data analysis.
But there is more on the horizon. Carefully crafted AI models that interact seamlessly with Apollo will be able to squeeze all the “quantum juice” out and generate data that was hitherto unavailable to mankind. We anticipate using this data to further the field of AI itself, as it can be used as training data.
The era of scientific (quantum) discovery and exploration will inevitably lead to commercial value. Apollo will be the centerpiece of this commercial tipping point where use-cases will build on the value of scientific discovery and support highly innovative commercially viable products.
Very interestingly, we will uncover applications that we are currently unaware of. As is always the case with disruptive new technology, Apollo will run currently unknown use-cases and applications that will make perfect sense once we see them. We are eager to co-develop these with our customers in our unique co-creation program.
Today, System Model H2 is our most advanced commercial quantum computer, providing 56 physical qubits with physical two-qubit gate errors less than 10-3. System Model H2, like all our systems, is based on the QCCD architecture.
Starting from where we are today, our roadmap progresses through two additional machines prior to Apollo. The Quantinuum Helios™ system, which we are releasing in 2025, will offer around 100 physical qubits with two-qubit gate errors less than 5x10-4. In addition to expanded qubit count and better errors, Helios makes two departures from H2. First, Helios will use 137Ba+ qubits in contrast to the 171Yb+ qubits used in our H1 and H2 systems. This change enables lower two-qubit gate errors and less complex laser systems with lower cost. Second, for the first time in a commercial system, Helios will use junction-based qubit routing. The result will be a “twice-as-good" system: Helios will offer roughly 2x more qubits with 2x lower two-qubit gate errors while operating more than 2x faster than our 56-qubit H2 system.
After Helios we will introduce Quantinuum Sol™, our first commercially available 2D-grid-based quantum computer. Sol will offer hundreds of physical qubits with two-qubit gate errors less than 2x10-4, operating approximately 2x faster than Helios. Sol being a fully 2D-grid architecture is the scalability launching point for the significant size increase planned for Apollo.
Thanks to Sol’s low error rates, users will be able to execute circuits with up to 10,000 quantum operations. The usefulness of Helios and Sol may be extended with a combination of quantum error detection (QED) and quantum error mitigation (QEM). For example, the [[k+2, k, 2]] iceberg code is a light-weight QED code that encodes k+2 physical qubits into k logical qubits and only uses an additional 2 ancilla qubits. This low-overhead code is well-suited for Helios and Sol because it offers the non-Clifford variable angle entangling ZZ-gate directly without the overhead of magic state distillation. The errors Iceberg fails to detect are already ~10x lower than our physical errors, and by applying a modest run-time overhead to discard detected failures, the effective error in the computation can be further reduced. Combining QED with QEM, a ~10x reduction in the effective error may be possible while maintaining run-time overhead at modest levels and below that of full-blown QEC.
Our new roadmap is an acceleration over what we were previously planning. The benefits of this are obvious: Apollo brings the commercial tipping point sooner than we previously thought possible. This acceleration is made possible by a set of recent breakthroughs.
First, we solved the “wiring problem”: we demonstrated that trap chip control is scalable using our novel center-to-left-right (C2LR) protocol and broadcasting shared control signals to multiple electrodes. This demonstration of qubit rearrangement in a 2D geometry marks the most advanced ion trap built, containing approximately 40 junctions. This trap was deployed to 3 different testbeds in 2 different cities and operated with 2 different collections of dual-ion-species, and all 3 cases were a success. These demonstrations showed that the footprint of the most complex parts of the trap control stay constant as the number of qubits scales up. This gives us the confidence that Sol, with approximately 100 junctions, will be a success.
Second, we continue to reduce our two-qubit physical gate errors. Today, H1 and H2 have two-qubit gate errors less than 1x10-3 across all pairs of qubits. This is the best in the industry and is a key ingredient in our record >2 million quantum volume. Our systems are the most benchmarked in the industry, and we stand by our data - making it all publicly available. Recently, we observed an 8x10-4 two-qubit gate error in our Helios development test stand in 137Ba+, and we’ve seen even better error rates in other testbeds. We are well on the path to meeting the 5x10-4 spec in Helios next year.
Third, the all-to-all connectivity offered by our systems enables highly efficient QEC codes. In Microsoft’s recent demonstration, our H2 system with 56 physical qubits was used to generate 12 logical qubits at distance 4. This work demonstrated several experiments, including repeated rounds of error correction where the error in the final result was ~10x lower than the physical circuit baseline.
In conclusion, through a combination of advances in hardware readiness and QEC, we have line-of-sight to Apollo by the end of the decade, a fully fault-tolerant quantum advantaged machine. This will be a commercial tipping point: ushering in an era of scientific discovery in physics, materials, chemistry, and more. Along the way, users will have the opportunity to discover new enabling use cases through quantum error detection and mitigation in Helios and Sol.
Quantinuum has the best quantum computers today and is on the path to offering fault-tolerant useful quantum computation by the end of the decade.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quietly, and determinedly since 2019, we’ve been working on Generative Quantum AI. Our early focus on building natively quantum systems for machine learning has benefitted from and been accelerated by access to the world’s most powerful quantum computers, and quantum computers that cannot be classically simulated.
Our work additionally benefits from being very close to our Helios generation quantum computer, built in Colorado, USA. Helios is 1 trillion times more powerful than our H2 System, which is already significantly more advanced than all other quantum computers available.
While tools like ChatGPT have already made a profound impact on society, a critical limitation to their broader industrial and enterprise use has become clear. Classical large language models (LLMs) are computational behemoths, prohibitively huge and expensive to train, and prone to errors that damage their credibility.
Training models like ChatGPT requires processing vast datasets with billions, even trillions, of parameters. This demands immense computational power, often spread across thousands of GPUs or specialized hardware accelerators. The environmental cost is staggering—simply training GPT-3, for instance, consumed nearly 1,300 megawatt-hours of electricity, equivalent to the annual energy use of 130 average U.S. homes.
This doesn’t account for the ongoing operational costs of running these models, which remain high with every query.
Despite these challenges, the push to develop ever-larger models shows no signs of slowing down.
Enter quantum computing. Quantum technology offers a more sustainable, efficient, and high-performance solution—one that will fundamentally reshape AI, dramatically lowering costs and increasing scalability, while overcoming the limitations of today's classical systems.
At Quantinuum we have been maniacally focused on “rebuilding” machine learning (ML) techniques for Natural Language Processing (NLP) using quantum computers.
Our research team has worked on translating key innovations in natural language processing — such as word embeddings, recurrent neural networks, and transformers — into the quantum realm. The ultimate goal is not merely to port existing classical techniques onto quantum computers but to reimagine these methods in ways that take full advantage of the unique features of quantum computers.
We have a deep bench working on this. Our Head of AI, Dr. Steve Clark, previously spent 14 years as a faculty member at Oxford and Cambridge, and over 4 years as a Senior Staff Research Scientist at DeepMind in London. He works closely with Dr. Konstantinos Meichanetzidis, who is our Head of Scientific Product Development and who has been working for years at the intersection of quantum many-body physics, quantum computing, theoretical computer science, and artificial intelligence.
A critical element of the team’s approach to this project is avoiding the temptation to simply “copy-paste”, i.e. taking the math from a classical version and directly implementing that on a quantum computer.
This is motivated by the fact that quantum systems are fundamentally different from classical systems: their ability to leverage quantum phenomena like entanglement and interference ultimately changes the rules of computation. By ensuring these new models are properly mapped onto the quantum architecture, we are best poised to benefit from quantum computing’s unique advantages.
These advantages are not so far in the future as we once imagined – partially driven by our accelerating pace of development in hardware and quantum error correction.
The ultimate problem of making a computer understand a human language isn’t unlike trying to learn a new language yourself – you must hear/read/speak lots of examples, memorize lots of rules and their exceptions, memorize words and their meanings, and so on. However, it’s more complicated than that when the “brain” is a computer. Computers naturally speak their native languages very well, where everything from machine code to Python has a meaningful structure and set of rules.
In contrast, “natural” (human) language is very different from the strict compliance of computer languages: things like idioms confound any sense of structure, humor and poetry play with semantics in creative ways, and the language itself is always evolving. Still, people have been considering this problem since the 1950’s (Turing’s original “test” of intelligence involves the automated interpretation and generation of natural language).
Up until the 1980s, most natural language processing systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing.
Initial ML approaches were largely “statistical”: by analyzing large amounts of text data, one can identify patterns and probabilities. There were notable successes in translation (like translating French into English), and the birth of the web led to more innovations in learning from and handling big data.
What many consider “modern” NLP was born in the late 2000’s, when expanded compute power and larger datasets enabled practical use of neural networks. Being mathematical models, neural networks are “built” out of the tools of mathematics; specifically linear algebra and calculus.
Building a neural network, then, means finding ways to manipulate language using the tools of linear algebra and calculus. This means representing words and sentences as vectors and matrices, developing tools to manipulate them, and so on. This is precisely the path that researchers in classical NLP have been following for the past 15 years, and the path that our team is now speedrunning in the quantum case.
The first major breakthrough in neural NLP came roughly a decade ago, when vector representations of words were developed, using the frameworks known as Word2Vec and GloVe (Global Vectors for Word Representation). In a recent paper, our team, including Carys Harvey and Douglas Brown, demonstrated how to do this in quantum NLP models – with a crucial twist. Instead of embedding words as real-valued vectors (as in the classical case), the team built it to work with complex-valued vectors.
In quantum mechanics, the state of a physical system is represented by a vector residing in a complex vector space, called a Hilbert space. By embedding words as complex vectors, we are able to map language into parameterized quantum circuits, and ultimately the qubits in our processor. This is a major advance that was largely under appreciated by the AI community but which is now rapidly gaining interest.
Using complex-valued word embeddings for QNLP means that from the bottom-up we are working with something fundamentally different. This different “geometry” may provide advantage in any number of areas: natural language has a rich probabilistic and hierarchical structure that may very well benefit from the richer representation of complex numbers.
Another breakthrough comes from the development of quantum recurrent neural networks (RNNs). RNNs are commonly used in classical NLP to handle tasks such as text classification and language modeling.
Our team, including Dr. Wenduan Xu, Douglas Brown, and Dr. Gabriel Matos, implemented a quantum version of the RNN using parameterized quantum circuits (PQCs). PQCs allow for hybrid quantum-classical computation, where quantum circuits process information and classical computers optimize the parameters controlling the quantum system.
In a recent experiment, the team used their quantum RNN to perform a standard NLP task: classifying movie reviews from Rotten Tomatoes as positive or negative. Remarkably, the quantum RNN performed as well as classical RNNs, GRUs, and LSTMs, using only four qubits. This result is notable for two reasons: it shows that quantum models can achieve competitive performance using a much smaller vector space, and it demonstrates the potential for significant energy savings in the future of AI.
In a similar experiment, our team partnered with Amgen to use PQCs for peptide classification, which is a standard task in computational biology. Working on the Quantinuum System Model H1, the joint team performed sequence classification (used in the design of therapeutic proteins), and they found competitive performance with classical baselines of a similar scale. This work was our first proof-of-concept application of near-term quantum computing to a task critical to the design of therapeutic proteins, and helped us to elucidate the route toward larger-scale applications in this and related fields, in line with our hardware development roadmap.
Transformers, the architecture behind models like GPT-3, have revolutionized NLP by enabling massive parallelism and state-of-the-art performance in tasks such as language modeling and translation. However, transformers are designed to take advantage of the parallelism provided by GPUs, something quantum computers do not yet do in the same way.
In response, our team, including Nikhil Khatri and Dr. Gabriel Matos, introduced “Quixer”, a quantum transformer model tailored specifically for quantum architectures.
By using quantum algorithmic primitives, Quixer is optimized for quantum hardware, making it highly qubit efficient. In a recent study, the team applied Quixer to a realistic language modeling task and achieved results competitive with classical transformer models trained on the same data.
This is an incredible milestone achievement in and of itself.
This paper also marks the first quantum machine learning model applied to language on a realistic rather than toy dataset.
This is a truly exciting advance for anyone interested in the union of quantum computing and artificial intelligence, and is in danger of being lost in the increased ‘noise’ from the quantum computing sector where organizations who are trying to raise capital will try to highlight somewhat trivial advances that are often duplicative.
Carys Harvey and Richie Yeung from Quantinuum in the UK worked with a broader team that explored the use of quantum tensor networks for NLP. Tensor networks are mathematical structures that efficiently represent high-dimensional data, and they have found applications in everything from quantum physics to image recognition. In the context of NLP, tensor networks can be used to perform tasks like sequence classification, where the goal is to classify sequences of words or symbols based on their meaning.
The team performed experiments on our System Model H1, finding comparable performance to classical baselines. This marked the first time a scalable NLP model was run on quantum hardware – a remarkable advance.
The tree-like structure of quantum tensor models lends itself incredibly well to specific features inherent to our architecture such as mid-circuit measurement and qubit re-use, allowing us to squeeze big problems onto few qubits.
Since quantum theory is inherently described by tensor networks, this is another example of how fundamentally different quantum machine learning approaches can look – again, there is a sort of “intuitive” mapping of the tensor networks used to describe the NLP problem onto the tensor networks used to describe the operation of our quantum processors.
While it is still very early days, we have good indications that running AI on quantum hardware will be more energy efficient.
We recently published a result in “random circuit sampling”, a task used to compare quantum to classical computers. We beat the classical supercomputer in time to solution as well as energy use – our quantum computer cost 30,000x less energy to complete the task than Frontier, the classical supercomputer we compared against.
We may see, as our quantum AI models grow in power and size, that there is a similar scaling in energy use: it’s generally more efficient to use ~100 qubits than it is to use ~10^18 classical bits.
Another major insight so far is that quantum models tend to require significantly fewer parameters to train than their classical counterparts. In classical machine learning, particularly in large neural networks, the number of parameters can grow into the billions, leading to massive computational demands.
Quantum models, by contrast, leverage the unique properties of quantum mechanics to achieve comparable performance with a much smaller number of parameters. This could drastically reduce the energy and computational resources required to run these models.
As quantum computing hardware continues to improve, quantum AI models may increasingly complement or even replace classical systems. By leveraging quantum superposition, entanglement, and interference, these models offer the potential for significant reductions in both computational cost and energy consumption. With fewer parameters required, quantum models could make AI more sustainable, tackling one of the biggest challenges facing the industry today.
The work being done by Quantinuum reflects the start of the next chapter in AI, and one that is transformative. As quantum computing matures, its integration with AI has the potential to unlock entirely new approaches that are not only more efficient and performant but can also handle the full complexities of natural language. The fact that Quantinuum’s quantum computers are the most advanced in the world, and cannot be simulated classically, gives us a unique glimpse into a future.
The future of AI now looks very much to be quantum and Quantinuum’s Gen QAI system will usher in the era in which our work will have meaningful societal impact.
At this year’s Q2B Silicon Valley conference from December 10th – 12th in Santa Clara, California, the Quantinuum team will be participating in plenary and case study sessions to showcase our quantum computing technologies.
Schedule a meeting with us at Q2B
Meet our team at Booth #G9 to discover how Quantinuum is charting the path to universal, fully fault-tolerant quantum computing.
Join our sessions:
Plenary: Advancements in Fault-Tolerant Quantum Computation: Demonstrations and Results
There is industry-wide consensus on the need for fault-tolerant QPU’s, but demonstrations of these abilities are less common. In this talk, Dr. Hayes will review Quantinuum’s long list of meaningful demonstrations in fault-tolerance, including real-time error correction, a variety of codes from the surface code to exotic qLDPC codes, logical benchmarking, beyond break-even behavior on multiple codes and circuit families.
Keynote: Quantum Tokens: Securing Digital Assets with Quantum Physics
Mitsui’s Deputy General Manager, Quantum Innovation Dept., Corporate Development Div., Koji Naniwada, and Quantinuum’s Head of Cybersecurity, Duncan Jones will deliver a keynote presentation on a case study for quantum in cybersecurity. Together, our organizations demonstrated the first implementation of quantum tokens over a commercial QKD network. Quantum tokens enable three previously incompatible properties: unforgeability guaranteed by physics, fast settlement without centralized validation, and user privacy until redemption. We present results from our successful Tokyo trial using NEC's QKD commercial hardware and discuss potential applications in financial services.
Quantinuum and Mitsui Sponsored Happy Hour
Join the Quantinuum and Mitsui teams in the expo hall for a networking happy hour.