We’ve just found a new, resource-efficient way to set up calculations

June 12, 2024

A key step in many quantum algorithms is setting everything up: you need all your dominoes in place before you can do much else. This is called “state preparation”, and it’s a trickier problem than it might seem. 

Our team has developed new protocols that can help – and in a big way. Specifically, the team worked on preparing “multivariate” functions, which just means functions that are used to explore problems with more than one variable, or in more than 1 dimension. One-dimensional problems do exist (think of a path that only goes forwards or backwards – we can call the variable “x”) but in the real world it’s much more common to have problems with many dimensions, or variables (think instead of a landscape where you can go forwards, backwards, left, right, up, and down – we can call the variables “x”, ”y”, and “z”).

Our new multivariate function quantum state preparation protocols don’t rely on some commonly-used and computationally expensive subroutines - instead they expand the desired multivariate function into well-known mathematical basis functions, called Fourier and Chebyshev functions. This makes our protocols simpler and more effective than previous options. 

Generally, state preparation is a hard problem, and costs exponentially many resources to prepare an arbitrary state. By expanding the functions in a Fourier or Chebyshev series, one can truncate the series to create good approximations, which instead uses only polynomially many resources – meaning that this method has better asymptotic scaling than many other non-heuristic methods (which are often designed to work in only one dimension anyways). 

Our team used their protocol to prepare a commonly used initial state on our H2 trapped-ion quantum processor, the bivariate Gaussian. Bivariate Gaussians are used everywhere from physics to finance, underscoring the practicality of these new protocols. They also analyzed examples potentially useful for quantum chemistry and partial differential equations.

A very nice feature of this work is that it is broadly applicable, generic, and entirely modular – meaning it can be plugged in to the beginning of almost any quantum algorithm, giving our customers and users even more flexibility and power. 

arrow
Kaniah Konkoly-Thege

Kaniah is Chief Legal Counsel and SVP of Government Relations for Quantinuum. In her previous role, she served as General Counsel, Honeywell Quantum Solutions. Prior to Honeywell, she was General Counsel, Honeywell Federal Manufacturing and Technologies, LLC, and Senior Attorney, U.S. Department of Energy. She was Lead Counsel before the Civilian Board of Contract Appeals, the Merit Systems Protection Board, and the Equal Employment Opportunity Commission. Kaniah holds a J.D. from American University, Washington College of Law and B.A., International Relations and Spanish from the College of William and Mary.

Jeff Miller

Jeff Miller is Chief Information Officer for Quantinuum. In his previous role, he served as CIO for Honeywell Quantum Solutions and led a cross-functional team responsible for Information Technology, Cybersecurity, and Physical Security. For Honeywell, Jeff has held numerous management and executive roles in Information Technology, Security, Integrated Supply Chain and Program Management. Jeff holds a B.S., Computer Science, University of Arizona. He is a veteran of the U.S. Navy, attaining the rank of Commander.

Matthew Bohne

Matthew Bohne is the Vice President & Chief Product Security Officer for Honeywell Corporation. He is a passionate cybersecurity leader and executive with a proven track record of building and leading cybersecurity organizations securing energy, industrial, buildings, nuclear, pharmaceutical, and consumer sectors. He is a sought-after expert with deep experience in DevSecOps, critical infrastructure, software engineering, secure SDLC, supply chain security, privacy, and risk management.

Todd Moore

Todd Moore is the Global Vice President of Data Encryption Products at Thales. He is responsible for setting the business line and go to market strategies for an industry leading cybersecurity business. He routinely helps enterprises build solutions for a wide range of complex data security problems and use cases. Todd holds several management and technical degrees from the University of Virginia, Rochester Institute of Technology, Cornell University and Ithaca College. He is active in his community, loves to travel and spends much of his free time supporting his family in pursuing their various passions.

John Davis

Retired U.S. Army Major General John Davis is the Vice President, Public Sector for Palo Alto Networks, where he is responsible for expanding cybersecurity initiatives and global policy for the international public sector and assisting governments around the world to prevent successful cyber breaches. Prior to joining Palo Alto Networks, John served as the Senior Military Advisor for Cyber to the Under Secretary of Defense for Policy and served as the Acting Deputy Assistant Secretary of Defense for Cyber Policy.  Prior to this assignment, he served in multiple leadership positions in special operations, cyber, and information operations.