Quantinuum and CU Boulder just made quantum error correction easier

Bringing the era of quantum ‘fault tolerance’ closer to reality

July 1, 2024

For a quantum computer to be useful, it must be universal, have lots of qubits, and be able to detect and correct errors. The error correction step must be done so well that in the final calculations, you only see an error in less than one in a billion (or maybe even one in a trillion) tries. Correcting errors on a quantum computer is quite tricky, and most current error correcting schemes are quite expensive for quantum computers to run.

We’ve teamed up with researchers at the University of Colorado to make error correction a little easier – bringing the era of quantum ‘fault tolerance’ closer to reality. Current approaches to error correction involve encoding the quantum information of one qubit into several entangled qubits (called a “logical” qubit). Most of the encoding schemes (called a “code”) in use today are relatively inefficient – they can only make one logical qubit out of a set of physical qubits. As we mentioned earlier, we want lots of error corrected qubits in our machines, so this is highly suboptimal – a “low encoding rate” means that you need many, many more physical qubits to realize a machine with lots of error corrected logical qubits.

Ideally, our computers will have “high-rate” codes (meaning that you get more logical qubits per physical qubit), and researchers have identified promising schemes known as “non-local qLDPC codes”. This type of code has been discussed theoretically for years, but until now had never been realized in practice. In a new paper on the arXiv, the joint team has implemented a high rate non-local qLDPC code on our H2 quantum processor, with impressive results. 

The team used the code to create 4 error protected (logical) qubits, then entangled them in a “GHZ state” with better fidelity than doing the same operation on physical qubits – meaning that the error protection code improved fidelity in a difficult entangling operation. The team chose to encode a GHZ state because it is widely used as a system-level benchmark, and its better-than-physical logical preparation marks a highly mature system.

It is worth noting that this remarkable accomplishment was achieved with a very small team, half of whom do not have specialized knowledge about the underlying physics of our processors. Our hardware and software stack are now so mature that advances can be achieved by “quantum programmers” who don’t need advanced quantum hardware knowledge, and who can run their programs on a commercial machine between commercial jobs. This places us bounds ahead of the competition in terms of accessibility and reliability.

This paper marks the first time anyone has entangled 4 logical qubits with better fidelity than the physical analog. This work is in strong synergy with our recent announcement in partnership with Microsoft, where we demonstrated logical fidelities better than physical fidelities on entangled bell pairs and demonstrated multiple rounds of error correction. These results with two different codes underscore how we are moving into the era of fault-tolerance ahead of the competition.

The code used in this paper is significantly more optimized for architectures capable of moving the qubits around, like ours. In practice, this means that we are capable of “non-local” gates and reconfigurability. A big advantage in particular is that some of the critical operations amount to a simple relabeling of the individual qubits, which is virtually error-free.

The biggest advantage, however, is in this code’s very high encoding rate. Unlike many codes in use today, this code offers a very high rate of logical qubits per physical qubit – in fact, the number of logical qubits is proportional to the number of physical qubits, which will allow our machines to scale much more quickly than more traditional codes that have a hard limit on the number of logical qubits one can get in each code block. This is yet another proof point that our machines will scale effectively and quickly.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
|
partnership
November 17, 2025
Quantinuum Powering Hybrid Quantum AI Supercomputing with NVIDIA

Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges. 

The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research. 

We are also working with NVIDIA to adopt  NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction. 

In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.

The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including  the development of breakthrough quantum-enhanced AI applications.

A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.

From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.

partnership
All
Blog
|
technical
November 13, 2025
From Memory to Logic

By Dr. Noah Berthusen

The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.

Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.

Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.

Building on prior error correcting codes

A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.

Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.

The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.

Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.

technical
All
Blog
|
events
November 12, 2025
Quantinuum at SC25: Advancing the Integration of Quantum and High-Performance Computing

Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.

Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.

Visit Quantinuum in the Expo Hall

The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.

  • Live demo unit of our quantum hardware
  • Our new Helios replica, providing an up-close look at the design behind our next-generation system
  • The Helios chip, highlighting the innovation driving the world’s most advanced trapped-ion quantum computers

On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.

View The Tutorial Schedule >

Speaking Sessions at SC25

Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:

Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST

During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.

BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST

Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.

events
All