Introducing Quantum Origin

December 7, 2021
  • Quantum Origin is the world’s first commercial product built using quantum computers that delivers an outcome that classical computers could not achieve
  • Quantum Origin is the first platform to derive cryptographic keys using the output of a quantum computer to ensure data is protected at foundational level against evolving attacks
  • It provides immediate protection to enterprises and governments from current security issues, arising from the use of weaker random number generators (RNGs)
  • Quantum Origin also helps protect against ‘hack now, decrypt later’ attacks, which are already happening and will have future implications
  • The quantum-enhanced cryptographic keys generated by Quantum Origin are based on verifiable quantum randomness and can be integrated into existing systems. The protocol relies on “entanglement”, a unique feature of quantum mechanics.
  • Quantum Origin supports traditional algorithms, such as RSA or AES, as well as post-quantum cryptography algorithms currently being standardized by the National Institute for Standards and Technology (NIST)

Cambridge Quantum (CQ), the global leader in quantum software, and a wholly owned subsidiary of Quantinuum, the world’s leading integrated quantum computing company, is pleased to announce that it is launching Quantum Origin – the world’s first commercially available cryptographic key generation platform based on verifiable quantum randomness. It is the first commercial product built using a noisy, intermediate-scale quantum (NISQ) computer and has been built to secure the world’s data from both current and advancing threats to current encryption.

Randomness is critical to securing current security solutions as well as protecting systems from the future threat of quantum attacks. These attacks will further weaken deterministic methods of random number generation, as well as methods that are not verifiably random and from a quantum source.

Today’s systems are protected by encryption standards such as RSA and AES. Their resilience is based on the inability to “break” a long string from a random number generator (RNG). Today’s RNGs, however, lack true, verifiable randomness; the numbers being generated aren’t as unpredictable as thought, and, as a result, such RNGs have been the point of failure in a growing number of cyber attacks. To add to this, the potential threat of quantum attacks is now raising the stakes further, incentivizing criminals to steal encrypted data passing over the internet, with a view to decrypting it later using quantum computers. So-called “hack now, decrypt later” attacks.

Quantum Origin is a cloud-hosted platform that protects against these current and future threats. It uses the unpredictable nature of quantum mechanics to generate cryptographic keys seeded with verifiable quantum randomness from Quantinuum’s H-Series quantum computers, Powered by Honeywell. It supports traditional algorithms, such as RSA or AES, as well as post-quantum cryptography algorithms currently being standardized by the National Institute for Standards and Technology (NIST).

“We have been working for a number of years now on a method to efficiently and effectively use the unique features of quantum computers in order to provide our customers with a defense against adversaries and criminals now and in the future once quantum computers are prevalent,” said Ilyas Khan, CEO of Quantinuum and Founder of Cambridge Quantum. He added “Quantum Origin gives us the ability to be safe from the most sophisticated and powerful threats today as well threats from quantum computers in the future.”

Duncan Jones, head of cybersecurity at Cambridge Quantum, said: “When we talk about protecting systems using quantum-powered technologies, we’re not just talking about protecting them from future threats. From large-scale takedowns of organizations, to nation state hackers and the worrying potential of ‘hack now, decrypt later’ attacks, the threats are very real today, and very much here to stay. Responsible enterprises need to deploy every defense possible to ensure maximum protection at the encryption level today and tomorrow.”

Quantum-enhanced keys on demand

With Quantum Origin, when an organization requires quantum-enhanced keys to be generated, it can now make a call via an API. Quantum Origin generates the keys before encrypting them with a transport key and securely relaying them back to the organization. To give organizations a high-level of assurance that their encryption keys are as unpredictable as possible, Quantum Origin tests the entire output from the quantum computers, ensuring that each key is seeded from verifiable quantum randomness.

These keys are then simple and easy to integrate within customers' existing systems because they’re provided in a format that can be consumed by traditional cybersecurity systems and hardware. This end-to-end approach ensures key generation is on-demand and is capable of scaling with use, all while remaining secure.

Quantum Origin in practice

Quantum Origin keys should be used in any scenario where there is a need for strong cybersecurity. At launch, Cambridge Quantum will offer Quantum Origin to financial services companies and vendors of cybersecurity products before expanding into other high priority sectors, such as telecommunications, energy, manufacturing, defense and government.

The technology has already been used in a series of projects with launch partners. Axiom Space used Quantum Origin to conduct a test of post-quantum encrypted communication between the ISS and Earth — sending the message “Hello Quantum World” back to earth encrypted with post-quantum keys seeded from verifiable quantum randomness. Fujitsu integrated Quantum Origin into its software-defined wide area network (SDWAN) using quantum-enhanced keys alongside traditional algorithms.

For more information:

Learn more about Quantum Origin
Discover our partners
Explore our case studies
Book a demo with our experts

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
September 15, 2025
Quantum World Congress 2025

From September 16th – 18th, Quantum World Congress (QWC) will bring together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.

Quantinuum is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. Join our quantum experts for the below sessions and at Booth #27 to discuss the latest on Quantinuum Systems, the world’s highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.

Wednesday, September 17th

Keynote with Quantinuum's CEO, Dr. Rajeeb Hazra
9:00 – 9:20am ET | Main Stage

At QWC 2024, Quantinuum’s President & CEO, Dr. Rajeeb “Raj” Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, join Raj on the main stage to discover the progress we’ve made over the last year in advancing quantum computing on both commercial and technical fronts and be the first to hear exciting insights on what’s to come from Quantinuum.

Panel Session: Policy Priorities for Responsible Quantum and AI
1:00 – 1:30pm ET | Maplewood Hall

As part of the Track Sessions on Government & Security, Quantinuum’s Director of Government Relations, Ryan McKenney,  will discuss “Policy Priorities for Responsible Quantum and AI” with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.

Fireside Chat: Establishing a Pro-Innovation Regulatory Framework
4:00 – 4:30pm ET | Vault Theater

During the Track Session on Industry Advancement, Quantinuum’s Chief Legal Officer, Kaniah Konkoly-Thege,  and Director of Government Relations, Ryan McKenney,  will take the stage to discuss the importance of “Establishing a Pro-Innovation Regulatory Framework”.

events
All
Blog
September 15, 2025
Quantum gravity in the lab

In the world of physics, ideas can lie dormant for decades before revealing their true power. What begins as a quiet paper in an academic journal can eventually reshape our understanding of the universe itself.

In 1993, nestled deep in the halls of Yale University, physicist Subir Sachdev and his graduate student Jinwu Ye stumbled upon such an idea. Their work, originally aimed at unraveling the mysteries of “spin fluids”, would go on to ignite one of the most surprising and profound connections in modern physics—a bridge between the strange behavior of quantum materials and the warped spacetime of black holes.

Two decades after the paper was published, it would be pulled into the orbit of a radically different domain: quantum gravity. Thanks to work by renowned physicist Alexei Kitaev in 2015, the model found new life as a testing ground for the mind-bending theory of holography—the idea that the universe we live in might be a projection, from a lower-dimensional reality.

Holography is an exotic approach to understanding reality where scientists use holograms to describe higher dimensional systems in one less dimension. So, if our world is 3+1 dimensional (3 spatial directions plus time), there exists a 2+1, or 3-dimensional description of it. In the words of Leonard Susskind, a pioneer in quantum holography, "the three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface."  

The “SYK” model, as it is known today, is now considered a quintessential framework for studying strongly correlated quantum phenomena, which occur in everything from superconductors to strange metals—and even in black holes. In fact, The SYK model has also been used to study one of physics’ true final frontiers, quantum gravity, with the authors of the paper calling it “a paradigmatic model for quantum gravity in the lab.”  

The SYK model involves Majorana fermions, a type of particle that is its own antiparticle. A key feature of the model is that these fermions are all-to-all connected, leading to strong correlations. This connectivity makes the model particularly challenging to simulate on classical computers, where such correlations are difficult to capture. Our quantum computers, however, natively support all-to-all connectivity making them a natural fit for studying the SYK model.

Now, 10 years after Kitaev’s watershed lectures, we’ve made new progress in studying the SYK model. In a new paper, we’ve completed the largest ever SYK study on a quantum computer. By exploiting our system’s native high fidelity and all-to-all connectivity, as well as our scientific team’s deep expertise across many disciplines, we were able to study the SYK model at a scale three times larger than the previous best experimental attempt.

While this work does not exceed classical techniques, it is very close to the classical state-of-the-art. The biggest ever classical study was done on 64 fermions, while our recent result, run on our smallest processor (System Model H1), included 24 fermions. Modelling 24 fermions costs us only 12 qubits (plus one ancilla) making it clear that we can quickly scale these studies: our System Model H2 supports 56 qubits (or ~100 fermions), and Helios, which is coming online this year, will have over 90 qubits (or ~180 fermions).

However, working with the SYK model takes more than just qubits. The SYK model has a complex Hamiltonian that is difficult to work with when encoded on a computer—quantum or classical. Studying the real-time dynamics of the SYK model means first representing the initial state on the qubits, then evolving it properly in time according to an intricate set of rules that determine the outcome. This means deep circuits (many circuit operations), which demand very high fidelity, or else an error will occur before the computation finishes.

Our cross-disciplinary team worked to ensure that we could pull off such a large simulation on a relatively small quantum processor, laying the groundwork for quantum advantage in this field.

First, the team adopted a randomized quantum algorithm called TETRIS to run the simulation. By using random sampling, among other methods, the TETRIS algorithm allows one to compute the time evolution of a system without the pernicious discretization errors or sizable overheads that plague other approaches. TETRIS is particularly suited to simulating the SYK model because with a high level of disorder in the material, simulating the SYK Hamiltonian means averaging over many random Hamiltonians. With TETRIS, one generates random circuits to compute evolution (even with a deterministic Hamiltonian). Therefore, when applying TETRIS on SYK, for every shot one can just generate a random instance of the Hamiltonain, and generate a random circuit on TETRIS at the same time. This simple approach enables less gate counts required per shot, meaning users can run more shots, naturally mitigating noise.

In addition, the team “sparsified” the SYK model, which means “pruning” the fermion interactions to reduce the complexity while still maintaining its crucial features. By combining sparsification and the TETRIS algorithm, the team was able to significantly reduce the circuit complexity, allowing it to be run on our machine with high fidelity.

They didn’t stop there. The team also proposed two new noise mitigation techniques, ensuring that they could run circuits deep enough without devolving entirely into noise. The two techniques both worked quite well, and the team was able to show that their algorithm, combined with the noise mitigation, performed significantly better and delivered more accurate results. The perfect agreement between the circuit results and the true theoretical results is a remarkable feat coming from a co-design effort between algorithms and hardware.

As we scale to larger systems, we come closer than ever to realizing quantum gravity in the lab, and thus, answering some of science’s biggest questions.

technical
All
Blog
September 9, 2025
Preparation is everything

At Quantinuum, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.

A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or “state prep,” is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.

Recently, our algorithm teams have been tackling this challenge from all angles. We’ve published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.

In the first paper, our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.

To do this, our team investigated two different state prep methods. The first method uses Givens rotations, implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.

Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the “sparse state preparation” scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.

In the second paper, our team focused on state prep for materials simulation. Generally, it’s much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.

In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.

Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature – and approaches like this are what will allow us to perform the necessary studies to one day get us there.

Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the third paper, our team made fault-tolerant state preparation—the critical first step in any fault-tolerant algorithm—roughly twice as efficient. With our new “flag at origin” technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.

The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, we’ve figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.

On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our team’s work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystem—and is quite timely given our recent advances into true fault-tolerance.

This generality isn’t just applicable to different codes, it’s also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This “state diversity” is especially valuable when working with the best codes – codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.

From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.

technical
All