Blog

Discover how we are pushing the boundaries in the world of quantum computing

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
technical
All
April 25, 2024
Theoretical work finds shortcut to solving the Max-Cut problem with a quantum computer

We are surrounded by optimization problems – for example, what’s the most efficient route for getting all your chores done on a Sunday? What’s the best way to pack a suitcase? Modern businesses can’t escape the importance of optimization problems, they’re critical in everything from charting shipping routes to setting prices. 

To solve such real-world examples, experts build mathematical models and explore computer algorithms capable of finding the optimal path through a problem. In many cases, as they scale, problems become intractable to even the most powerful classical supercomputers. Research suggests that for some problems, quantum algorithms offer some new promise. Our researchers have explored a quantum approach to a widely applicable optimization problem called “Max-Cut”, where one cuts a graph to snip as many vertices as possible.

Finding exact solutions to the Max-Cut problem in a reasonable amount of time would have practical applications in a wide range of situations, including supply chain management, machine scheduling, image recognition, quality control, fraud detection, patient diagnostics, and electric circuit design. For a generic graph, this problem is really hard: a computer scientist would call it “NP hard”. There is no known classical algorithm to solve Max-Cut for a generic graph whose runtime is polynomial in the number of vertices L, and it is strongly believed that no such classical algorithm exists. Many other useful optimization problems have a similar problem: they may simply be too expensive to solve exactly with classical computers. Back in the real world, this explains why many aspects of daily life run sub-optimally. Consider the experience of multiple drivers delivering a succession of small goods from the same vendor, often packaged in clearly oversized boxes. The costs of this sort of inefficiency accrue in terms of time, money, and environmental impact, locally and at the full scale of the global economy.

Our team has been working on applying a quantum solution to the Max-Cut problem based on the adiabatic theorem of quantum mechanics. Using the adiabatic theorem to solve an optimization problem involves encoding the problem into the qubits (setting up the Hamiltonian), then letting the system slowly evolve some parameter, carefully keeping it in the ground state the whole time. This method is an all-purpose solver for classically hard optimization problems, but it comes at a large computational cost: the “slow” evolution means applying lots of expensive gates to perform the many time steps needed. 

Our team figured out that instead of taking many expensive steps they could instead take a limited amount without destroying the convergence, as long as the optimization problem has a classical Hamiltonian. They call this “Floquet adiabatic evolution” and find that this approach reduces the required number of gates by several orders of magnitude.

Contrary to variational quantum algorithms such as Quantum Approximate Optimization Algorithm (QAOA), these low circuit depths can be achieved without classical optimization of parameters (whose sensitivity to noise and scaling behavior is not well understood).

Extrapolating their numerical simulation results, the team estimated that there may be a quantum speedup for this problem with a 2-qubit gate infidelity around 10-5 and roughly 2000 qubits. Our H1 system already boasts a world-class 2-qubit gate infidelity of 8.8 × 10-4, and we are well on our way towards even better fidelity with more qubits. You can see our roadmap here, and read the paper here.

In the meantime, the paper proposes that this method could be used as a quantum computing benchmark for application-oriented problems, making a valuable contribution to the Bench-QC project, of which Quantinuum is a founding member.

technical
All
April 16, 2024
Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume

By Ilyas Khan, Founder and Chief Product Officer, Jenni Strabley, Sr Director of Offering Management

All quantum error correction schemes depend for their success on physical hardware achieving high enough fidelity. If there are too many errors in the physical qubit operations, the error correcting code has the effect of amplifying rather than diminishing overall error rates. For decades now, it has been hoped that one day a quantum computer would achieve “three 9's” – an iconic, inherent 99.9% 2-qubit physical gate fidelity – at which point many of the error-correcting codes required for universal fault tolerant quantum computing would successfully be able to squeeze errors out of the system.

That day has now arrived. Building on several previous laboratory demonstrations 1 2 3, Quantinuum has become the first company ever to achieve “three 9's” in a commercially-available quantum computer, with the first demonstration of 99.914(3)% 2-qubit gate fidelity, showing repeatable performance across all qubit pairs on our H1-1 system that is constantly available to customers. This production-environment announcement is a marked difference to one-offs recorded in carefully contrived laboratory conditions. This demonstrates what will fast become the expected standard for the entire quantum computing sector.

Quantinuum is also announcing another milestone, a seven-figure Quantum Volume (QV) of 1,048,576 – or in terms preferred by the experts, 220 – reinforcing our commitment to building, by a significant margin, the highest-performing quantum computers in the world.

These announcements follow a historic month that started when we proved our ability to scale our systems to the sizes needed to solve some of the world’s most pressing problems – and in a way that offers the best path to universal quantum computing.  

On March 5th, 2024, Quantinuum researchers disclosed details of our experiments that provide a solution to a totemic problem faced by all quantum computing architectures, known as the wiring problem. Supported by a video showing qubits being shuffled through a 2-dimensional grid ion-trap, our team presented concrete proof of the scalability of the quantum charge-coupled device (QCCD) architecture used in our H-Series quantum computers

Stop-motion ion transport video showing a chosen sorting operation implemented on an 8-site 2D grid trap with the swap-or-stay primitive. The sort is implemented by discrete choices of swaps or stays between neighboring sites. The numbers shown (indicated by dashed circles) at the beginning and end of the video show the initial and final location of the ions after the sort, e.g. the ion that starts at the top left site ends at the bottom right site. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.

On April 3rd, 2024 in partnership with Microsoft, our teams announced a breakthrough in quantum error correction that delivered as its crowning achievement the most reliable logical qubits on record.

We revealed detailed demonstrations in an arXiv pre-print paper of the reliability achieved via 4 logical qubits encoded into just 30 physical qubits on our System Model H2 quantum computer. Our joint teams were able to demonstrate logical circuit error rates far below physical circuit error rates, a capability that our full-stack quantum computer is currently the only one in the world with the fidelity required to achieve. 

Explaining the importance of 2-qubit gate fidelity

Reaching this level of physical fidelity is not optional for commercial scale computers – it is essential for error correction to work, and that in turn is a necessary foundation for any useful quantum computer. Our record two-qubit gate fidelity of 99.914(3)% marks a symbolic inflection point for the industry: at ”three 9's” fidelity, we are nearing or surpassing the break-even point (where logical qubits outperform physical qubits) for many quantum error correction protocols, and this will generate great interest among research and industrial teams exploring fault-tolerant methods for tackling real-world problems.

Without hardware fidelity this good, error-corrected calculations are noisier than un-corrected computations. This is why we call it a “threshold” – when gate errors are “above threshold”, quantum computers will remain noisy no matter what you do. Below threshold, you can use quantum error correction to push error rates way, way down, so that quantum computers eventually become as reliable as classical computers.  

Four years ago, Quantinuum claimed that it would improve the performance of its H-Series quantum computers by 10x each year for five years, when measured by the industry’s most widely recognized benchmark, QV (an industry standard not to be confused with less comprehensive metrics such as Algorithmic Qubits). 

Today’s achievement of a 220 QV – which as with all our demonstrations was achieved on our commercially-available machine – shows that our team is living up to this audacious commitment. We are completely confident we can continue to overcome the technical problems that stand in the way of even better fidelity and QV performance. Our QV data is available on GitHub, as are our hardware specifications

The combination of high QV and gate fidelities puts the Quantinuum system in a class by-itself – it is far and away the best of any commercially-available quantum computer.

A diagram of a circuitDescription automatically generated
Figure 1: Quantum Volume (QV) heavy output probability (HOP) as a function of time-ordered circuit index. The solid blue line shows the cumulative average while the green region shows the two-sigma confidence interval based on bootstrap resampling. A QV test is passed when the lower two-sigma confidence interval crosses 2/3.
A graph with numbers and a lineDescription automatically generated
Figure 2. Quantum volume vs time for our commercial systems. Quantinuum’s new world record quantum volume of 1,048,576 maintains our self-imposed goal of a 10-fold increase each year. In fact, in 2023 we achieved an overall increase in quantum volume of >100x.
A graph with a line and numbersDescription automatically generated with medium confidence
Figure 3. Two-qubit randomized benchmarking data from H1-1 across the five gate zones (dashed lines) and average over all five gate zones (solid blue line). The survival probability decays as a function of sequence length, which can be related to the average fidelity of the two-qubit gates with standard randomized benchmarking theory. With this data, we can claim that not only are all zones consistent with 99.9, but all zones are >99.9 outside of error bars.
QCCD: the path to fault tolerance

Additionally, and notably, these benchmarks were achieved “inherently”, without error mitigation, thanks to the H Series’ all-to-all connectivity and QCCD architecture. Full connectivity results in less errors when running large, complicated circuits. While other modalities depend on error mitigation techniques, such techniques are not scalable and present only a modest near-term value. 

Lower physical error and high connectivity means our quantum computers have a provably lower overhead for error-corrected computation.

Looking more deeply, experts look for high fidelities that are valid in all operating zones and between any pair of qubits. In contrast to our competitors, this is precisely what our H Series delivers. We do not suffer from a broad distribution of gate fidelities between different pairs of qubits, meaning that some pairs of qubits have significantly lower fidelities. Quantinuum is the only quantum computing company with all qubit pairs boasting above 99.9% fidelity.

Alongside these benefits and demonstrations of scalability, fidelity, connectivity, and reliability, it is worth noting how these features impact what arguably matters the most to users – time to solution. In the QCCD architecture, speed of operations is decoupled from speed to reach a computational solution thanks to a combination of:

  • a better signal to noise ratio than other modalities
  • drastically reducing or eliminating the number of swap gates required (because we can move our ions through space), and
  • reducing the number of trials required for an accurate result.

The net effect is that for increasingly complex circuits it takes a high-fidelity QCCD-type quantum computer less time to achieve accurate results than other 2D connected or lower-fidelity architectures.

“Getting to three 9’s in the QCCD architecture means that ~1000 entangling operations can be done before an error occurs. Our quantum computers are right at the edge of being able to do computations at the physical level that are beyond the reach of classical computers, which would occur somewhere between 3 nines and 4 nines. Some tasks become hard for classical computers before this regime (e.g. Google’s random circuit sampling problem) but this new regime allows for much less contrived problems to be solved. At that point, these machines become real tools for new discoveries – albeit they will still be limited in what they can probe, likely to be physics simulations or closely related problems,” said Dave Hayes, a Senior R&D manager at Quantinuum.

“Additionally, these fidelities put us, some would say comfortably, within the regime needed to build fault-tolerant machines. These fidelities allow us to start adding more qubits without needing to improve performance further, and to take advantage of quantum error correction to improve the computational power necessary for tackling truly large problems. This scaling problem gets easier with even better fidelities (which is why we’re not satisfied with 3 nines) but it is possible in principle.”

Quantinuum’s new records in fidelity and quantum volume on our commercial H1 device are expected to be achieved on the H2, once upgrades are implemented, underscoring the value that we offer to users for whom stability, reliability and robust performance are pre-requisites. The quantum computing landscape is complex and changing, but we remain at the head of the pack in all key metrics. The relationship with our world-class applications teams means that co-designed devices for solving some of the world’s most intractable problems are a big step closer to reality.

Quantinuum is the world’s leading quantum computing company, and our world-class scientists and engineers are continually driving our technology forward while expanding the possibilities for our users. Their work on applications includes cybersecurity, quantum chemistry, quantum Monte Carlo integration, quantum topological data analysis, condensed matter physics, high energy physics, quantum machine learning, and natural language processing – and we are privileged to support them to bring new solutions to bear on some of the greatest challenges we face.

events
All
April 14, 2024
Happy World Quantum Day to the global community!

Today, we celebrate the role that quantum science and technology plays in our everyday lives. At Quantinuum, we are on a mission to use quantum technologies to positively impact the world. With our H-Series quantum computers and world-leading software solutions, we will continue to work with the global community of researchers, engineers, and scientists to push boundaries and solve industry’s most complex computational problems.

Interested in learning more about Quantinuum and our quantum computing technologies? Meet our team of quantum experts at these events: 

  • From April 13th - 15th, our team of evangelists, business leaders and scientists will be participating in YQuantum, Yale’s inaugural quantum computing hackathon, and hosting an associated workshop for students and professors. Participants will have the opportunity to design new quantum algorithms and use quantum algorithms to solve unique problems.
  • On April 17th, Anand Shah will deliver a talk on “Trapped Ion Quantum Computing, current advancement and future plans” at the C4IR KSA event in Saudi Arabia. Anand will share insights on the quantum computing ecosystem, Quantinuum’s full-stack quantum computing technology and our work with partners and collaborators to develop industry-relevant applications.
events
All
April 10, 2024
Visit us at the RSA Conference to Learn Why Organizations are Adopting Quantum-Powered Cybersecurity
Hear from our experts on the value of provable quantum randomness for cybersecurity, in partnership with Thales

The world is preparing for the biggest cryptographic migration in history. Organizations must update their tools and policies to provide robust crypto discovery, post-quantum algorithms, and sources of provable quantum randomness. Starting early is critical to ensure migration is complete before the quantum threat materializes.

Join Thales, IBM and Quantinuum as we delve into practical guidance for a post-quantum transformation on May 8, at 10:30am in the North Hall Briefing Center at Quantum Leap: Insights and Approaches for a Post-Quantum World. Speakers include Todd Moore, Global Head of Data Security Products at Thales, Antti Ropponen, Executive Partner and Global Data & Application Security Services Leader, and Duncan Jones, Head of Cybersecurity at Quantinuum.

Todd Moore
Vice President, Data Security Products, Thales
Antti Ropponen
Executive Partner, Global Data and Applications Security Services Leader at IBM
Duncan Jones
Head of Cybersecurity, Quantinuum

In addition to speaking alongside Thales and IBM at the RSA Conference, Quantinuum is sponsoring Thales’ PQC Palooza on May 8 from 4:00 – 7:00pm at the Hyatt Regency Hotel. This is an exclusive post-quantum cryptography (PQC) event with industry experts sharing their approaches to preparing for the post-quantum era. The keynote address will be delivered by industry luminary Dr. Taher Elgamal, one of the forefathers of SSL, who will provide his unique perspective on cryptography and the upcoming PQC transformation. Additionally, there will be a panel discussion and an opportunity to talk with the Quantinuum team.

Visit our team at Booth 5280

5280 is the elevation (in feet) of Denver, where our commercial quantum computer sits. It’s also the number of our booth at the RSA Conference, where you can speak with our cyber experts. Look for our booth #5280 in the North Hall.

We look forward to seeing you in San Francisco!

partnership
All
April 3, 2024
Quantinuum and Microsoft achieve breakthrough that unlocks a new era of reliable quantum computing

By Ilyas Khan, Chief Product Officer and Jenni Strabley, Senior Director Offering Management

A screenshot of a computerDescription automatically generated

Quantinuum and Microsoft have announced a vital breakthrough in quantum computing that Microsoft described as “a major achievement for the entire quantum ecosystem.”

By combining Microsoft’s innovative qubit-virtualization system with the unique architectural features and fidelity of Quantinuum’s System Model H2 quantum computer, our teams have demonstrated the most reliable logical qubits on record with logical circuit error rates 800 times lower than the corresponding physical circuit error rates. 

A graph with blue text and blue squaresDescription automatically generated

This achievement is not just monumental for Quantinuum and Microsoft, but it is a major advancement for the entire quantum ecosystem. It is a crucial milestone on the path to building a hybrid supercomputing system that can truly transform research and innovation across many industries for decades to come. It also further bolsters H2’s title as the highest performing quantum computer in the world.

Entering a new era of quantum computing

Historically, there have been widely held assumptions about the physical qubits needed for large scale fault-tolerant quantum computing and the timeline to quantum computers delivering real-world value. It was previously thought that an achievement like this one was still years away from realization – but together, Quantinuum and Microsoft proved that fault-tolerant quantum computing is in fact a reality.

In enabling today’s announcement, Quantinuum’s System Model H2 becomes the first quantum computer to advance to Microsoft’s Level 2 – Resilient phase of quantum computing – an incredible milestone. Until now, no other computer had been capable of producing reliable logical qubits. 

Using Microsoft’s qubit-virtualization system, our teams used reliable logical qubits to perform 14,000 individual instances of a quantum circuit with no errors, an overall result that is unprecedented. Microsoft also demonstrated multiple rounds of active syndrome extraction – an essential error correction capability for measuring and detecting the occurrence of errors without destroying the quantum information encoded in the logical qubit. 

As we prepare to bring today’s logical quantum computing breakthrough to commercial users, there is palpable anticipation about what this new era means for our partners, customers, and the global quantum computing ecosystem that has grown up around our hardware, middleware, and software. 

Collaborating to reach a new era

To understand this achievement, it is helpful to shed some light on the joint work that went into it. Our breakthrough would not have been possible without the close collaboration of the two exceptional teams at Quantinuum and Microsoft over many years.

Building on a relationship that stretches back five years, we collaborated with Microsoft Azure Quantum at a very deep level to best execute their innovative qubit-virtualization system, including error diagnostics and correction. The Microsoft team was able to optimize their error correction innovation, reducing an original estimate of 300 required physical qubits 10-fold, to create four logical qubits with only 30 physical qubits, bringing it into scope for the 32-qubit H2 quantum computer.

This massive compression of the code and efficient virtualization challenges a consensus view about the resources needed to do fault-tolerant quantum computing, where it has been routinely stated that a logical qubit will require hundreds, even thousands of physical qubits. Through our collaboration, Microsoft’s far more efficient encoding was made possible by architectural features unique to the System Model H2, including our market-leading 99.8% two-qubit gate fidelity, 32 fully-connected qubits, and compatibility with Quantum Intermediate Representation (QIR).

Thanks to this powerful combination of collaboration, engineering excellence, and resource efficiency, quantum computing has taken a major step into a new era, introducing reliable logical qubits which will soon be available to industrial and research users.

Understanding today’s error correction breakthrough

It is widely recognized that for a quantum computer to be useful, it must be able to compute correctly even when errors (or faults) occur – this is what scientists and engineers describe as fault-tolerance. 

In classical computing, fault-tolerance is well-understood and we have come to take it for granted. We always assume that our computers will be reliable and fault-free. Multiple advances over the course of decades have led to this state of affairs, including hardware that is incredibly robust and error rates that are very low, and classical error correction schemes that are based on the ability to copy information across multiple bits, to create redundancy. 

Getting to the same point in quantum computing is more challenging, although the solution to this problem has been known for some time. Qubits are incredibly delicate since one must control the precise quantum states of single atoms, which are prone to errors. Additionally, we must abide by a fundamental law of quantum physics known as the no cloning theorem, which says that you can’t just copy qubits – meaning some of the techniques used in classical error correction are unavailable in quantum machines. 

The solution involves entangling groups of physical qubits (thereby creating a logical qubit), storing the relevant quantum information in the entangled state, and, via some complex functions, performing computations with error correction. This process is all done with the sole purpose of creating logical qubit errors lower than the errors at the physical level.

However, implementing quantum error correction requires a significant number of qubit operations. Unless the underlying physical fidelity is good enough, implementing a quantum error correcting code will add more noise to your circuit than it takes away. No matter how clever you are in implementing a code, if your physical fidelity is poor, the error correcting code will only introduce more noise. But, once your physical fidelity is good enough (aka when the physical error rate is “below threshold”), then you will see the error correcting code start to actually help: producing logical errors below the physical errors. 

A close-up of a computer chipDescription automatically generated
System Model H2 ion-trap quantum computer chip showing the “racetrack” trap design
Quantinuum’s fault-tolerance roadmap

Today’s results are an exciting marker on the path to fault-tolerant quantum computing. The focus must and will now shift from quantum computing companies simply stating the number of qubits they have to explaining their connectivity, the underlying quality of the qubits with reference to gate fidelities, and their approach to fault-tolerance.

Our H-Series hardware roadmap has not only focused on scaling qubits, but also developing useable quantum computers that are part of a vertically integrated stack. Our work across the full stack includes major advances at every level, for instance just last month we proved that our qubits could scale when we announced solutions to the wiring problem and the sorting problem. By maintaining higher qubit counts and world class fidelity, our customers and partners are able to advance further and faster in fields such as material science, drug discovery, AI and finance.

In 2025, we will introduce a new H-Series quantum computer, Helios, that takes the very best the H-Series has to offer, improving both physical qubit count and physical fidelity. This will take us and our users below threshold for a wider set of error correcting codes and make that device capable of supporting at least 10 highly reliable logical qubits. 

A path to real-world impact

As we build upon today’s milestone and lead the field on the path to fault-tolerance, we are committed to continuing to make significant strides in the research that enables the rapid advance of our technologies. We were the first to demonstrate real-time quantum error correction (meaning a fully-fault tolerant QEC protocol), a result that meant we were the first to show: repeated real-time error correction, the ability to perform quantum "loops" (repeat-until-success protocols), and real-time decoding to determine the corrections during the computation. We were the first to create non-Abelian topological quantum matter and braid its anyons, leading to topological qubits.

The native flexibility of our QCCD architecture has allowed us to efficiently investigate a large variety of fault-tolerant methods, and our best-in-class fidelity means we expect to lead the way in achieving reduced error rates with additional error correcting codes – and supporting our partners to do the same. We are already working on making reliable quantum computing a commercial reality so that our customers and partners can unlock the enormous real-world economic value that is waiting to be unleashed by the development of these systems. 

In the short term – with a hybrid supercomputer powered by a hundred reliable logical qubits, we believe that organizations will be able to start to see scientific advantages and will be able to accelerate valuable progress toward some of the most important problems that mankind faces such as modelling the materials used in batteries and hydrogen fuel cells or accelerating the development of meaning-aware AI language models. Over the long-term, if we are able to scale closer to ~1,000 reliable logical qubits, we will be able to unlock the commercial advantages that can ultimately transform the commercial world. 

Quantinuum customers have always been able to operate the most cutting-edge quantum computing, and we look forward to seeing how they, and our own world-leading teams, drive ahead developing new solutions based on the state-of-the-art tools we continue to put into their hands. We were the early leaders in quantum computing and now we are thrilled to be positioned at the forefront of fault-tolerant quantum computing. We are excited to see what today’s milestone unlocks for our customers in the days ahead.

For more information
technical
All
March 5, 2024
Quantinuum researchers make a huge leap forward demonstrating the scalability of the QCCD architecture, solving the “wiring problem”

Quantum computing promises to revolutionize everything from machine learning to drug design – if we can build a computer with enough qubits (and fault-tolerance, which is for a different blog post). The issue of scaling is arguably one of the hardest problems in the field at large: how can we get more qubits, and critically, how can we make all those qubits work the way we need them to? 

A key issue in scaling is called the “wiring problem”. In general, one needs to send control signals to each qubit to perform the necessary operations required for a computation. All extant quantum computers have a hefty number of control signals being sent individually to each qubit. If nothing changes, then as one scales up the number of qubits they would also need to scale up the number of control signals in tandem. This isn’t just impractical (and prohibitively expensive), it also becomes quickly impossible - one can’t physically wire that many signals into a single chip, no matter how delicate their wiring is. The wiring problem is a general problem that all quantum computing companies face, and each architecture will need to find its own solution.

Another key issue in scaling is the “sorting problem” - essentially, you want to be able to move your qubits around so that they can “talk” to each other. While not strictly necessary (for example, superconducting architectures can’t do this), it allows for a much more flexible and robust design – it is the ability to move our qubits around that gives us “all-to-all connectivity”, which bestows a number of advantages such as access to ultra-efficient high density error correcting codes, low-error transversal gates, algorithms for simulating complex problems in physics and chemistry, and more. 

Quantinuum just put a huge dent in the scaling problem with their latest result, using a clever approach to minimize the number of signals needed to control the qubits, in a way that doesn’t scale prohibitively with the number of qubits. Specifically, the scheme uses a fixed number of (expensive) analog signals, independent of the number of qubits, plus a single digital input per qubit. Together, this is the minimum amount of information needed for complete motional control. All of this was done with a new trap chip arranged in a 2D grid, uniquely designed to have a perfect balance between the symmetry required to make a uniform trap with the capacity to break the symmetry in a way that gives “direction” (eg left vs right), all while allowing for efficient sorting compared to keeping qubits in a line or a loop. Taken together, this approach solves both the wiring and sorting problems – a remarkable achievement.

Stop-motion ion transport video showing loading an 8-site 2D grid trap with co-wiring and the swap-or-stay primitive operation. Single Yb ions are loaded off screen to the left, and are then transported into the grid top left site and shifted into place with the swap-or-stay primitive until the grid is fully populated. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.

Stop-motion ion transport video showing a chosen sorting operation implemented on an 8-site 2D grid trap with the swap-or-stay primitive. The sort is implemented by discrete choices of swaps or stays between neighboring sites. The numbers shown (indicated by dashed circles) at the beginning and end of the video show the initial and final location of the ions after the sort, e.g. the ion that starts at the top left site ends at the bottom right site. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.

“We are the first company that has designed a trap that can be run with a reasonable number of signals within a framework for a scalable architecture,” said Curtis Volin, Principal R&D Engineer and Scientist.

The team used this new approach to demonstrate qubit transport and sorting with impressive results; demonstrating a swap rate of 2.5 kHz and very low heating. The low heating highlights the quality of the control system, while the swap rate demonstrates the importance of a 2D grid layout – it is much quicker to rearrange qubits on a grid vs qubits in a line or loop. On top of all that, this demonstration was done on three completely separate systems, proving it is not just “hero data” that worked one time on one system, but is instead a reproducible, commercial-quality result. Further underscoring the reproducibility, the data was taken with both Strontium/Barium pairs and Ytterbium/Barium pairs. 

This demonstration is a powerful example of Quantinuum’s commitment and capacity for the full design process from conception to delivery: our team designed a brand-new trap chip that has never been seen before, under strict engineering constraints, successfully fabricated that chip with exquisite quality, then finally demonstrated excellent experimental results on the new system. 

“It’s a heck of a demonstration,” quipped Ian Hoffman, a Lead Physicist at Quantinuum.