Mark Jackson is a man on a mission. As Quantinuum’s senior quantum evangelist, Mark’s job is to create awareness and understanding about quantum computing and its world-changing potential. Based in New York, Mark holds a Ph.D. in theoretical physics from Columbia University with a background in mathematical modeling and computational physics. In 2017 he joined Cambridge Quantum, which combined with Honeywell Quantum Solutions to form Quantinuum in 2021. He has an academic background and remains an adjunct faculty member at Singularity University. He sat down earlier this month to talk about his unique job and the future of quantum computing.
A lot of my job is speaking at conferences, doing interviews, participating in podcasts, and posting on social media. I focus on creating awareness and excitement for quantum computing, letting people know what we do at Quantinuum, and educating them about the ways this amazing technology will help solve complex problems and improve people’s lives.
Most people just don’t know much about quantum computing, or they have misunderstandings or reservations about the technology and its potential impact on society.
Half the people don’t believe quantum computers really exist yet. They think it’s some sort of science fiction idea that we’ve cooked up and, if it happens at all, it’ll be 20 years from now. They just can’t believe we have these computers today. The other half think quantum computers are just really fast computers. They believe we can take all our existing software and run it on a quantum computer, and it will be a million times faster. Neither is true, and it’s my job to educate people about what quantum computers can actually do to make the world better.
Over the past few years my role at Quantinuum has evolved a bit, and about a year ago they changed my title to “evangelist.” Technically, I’m now the “senior evangelist” because we recently added several other people to the team, which will help us do an even better job of spreading the word.
We anticipate we’re only 3–5 years away from being able to do things on a quantum computer that are truly valuable to society. That time will pass very quickly, which is why we’re encouraging companies to work with us right now to develop projects so that in a few years, when technology catches up, they’ll be in a good position to take advantage of opportunities.
The two nearest-term commercial applications for quantum computers are in chemistry and optimization, such as supply chain and logistics.
In chemistry, we have known the equations for 100 years. If you give me a molecule, I know exactly what the molecule is made of — I know how many electrons, protons and neutrons are in it, and I know the equations governing all their interactions. But, solving those equations and actually figuring out the behavior of the molecule is very difficult because, as a molecule gets bigger, there are so many interactions that tracking them quickly overwhelms a conventional computer. Quantum computers are expected to one day solve these chemical equations easier and faster.
For example, pharmaceutical companies could use this technology to design medicine. Right now, there is a lot of guesswork in developing a drug. Scientists can do a little preliminary work on a computer, but then they must synthesize a lot of trial drugs followed by testing on humans.
Developing drugs this way is expensive, time consuming, and risky. In general, it takes about 10 years and $1 billion dollars to bring a drug to market. It would be ideal if scientists could do more work on a computer up front, which will save time and money and be less risky for patients.
Additionally, quantum computing will be invaluable for the machine-learning industry. Artificial intelligence is used everywhere. Your Netflix recommendations use AI machine-learning, and while this may not be lifechanging, advanced autopilot technology on an airplane or in a driverless car will be. Quantum computers one day could have the power, speed, and capacity to take machine-learning to a whole new level.
I started hearing about quantum computing in 2017 and thought it sounded amazing. This field of study didn’t even exist when I was a student.
My background is in theoretical physics. For 15 years I worked in string theory and cosmology. Several years ago, I decided to leave academia and pursue other interests. I was very fortunate to be introduced to Ilyas Khan, founder of Cambridge Quantum and now CEO of Quantinuum, and he asked me to join the team about five years ago.
I was the first American hire at Cambridge Quantum, which was then a small start-up company with only about 30 people. The organization was comprised of all scientists until I joined. I was the first person to be hired whose main objective was business development.
We can have the most amazing technology in the world, but if no one knows about it, then it doesn’t do anyone much good. There is a lot of misunderstanding and unfamiliarity that surrounds this industry currently, which is why my job of creating awareness is so important.
I get to talk to university students and researchers and let them know we have software they can use for free to help them code better. I am very lucky to have an academic background in physics because when I speak at these universities, the professors sometimes let me take over the class for a day. I don’t think they would grant the same access to a salesperson. I love to talk about the cool things we have done and are doing with these students and share ways we can partner and collaborate both now and in the future.
We want to build our hiring pipeline with the smartest and most creative young minds available. Hiring is a top priority, and job candidates may not know there are such amazing job opportunities at Quantinuum and throughout this exciting industry.
When I started, there were 8–10 credible quantum computing startups, including us. We were all pretty small with just a few dozen employees at the time.
Now, it seems like there’s a new company forming, a new investment, or a technical breakthrough in hardware or software every week. There are quantum information sciences degrees and programs in college now including quantum computing and closely related sciences. It’s dizzying to keep up with everything.
Today, there are roughly 400 quantum companies, building quantum products all over the world. Companies are also increasing in size. Our company currently has 400 employees, but we’re hiring like crazy and anticipate adding 200 people in 2022.
The U.S. government also is investing. During the last administration, they had a Quantum Initiative Act (QIA) where $1.2 billion was allocated for quantum funding. Other countries also are investing. China, for example, has spent at least $30 billion in quantum technology over the last few years.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
From September 16th – 18th, Quantum World Congress (QWC) will bring together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.
Quantinuum is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. Join our quantum experts for the below sessions and at Booth #27 to discuss the latest on Quantinuum Systems, the world’s highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.
Keynote with Quantinuum's CEO, Dr. Rajeeb Hazra
9:00 – 9:20am ET | Main Stage
At QWC 2024, Quantinuum’s President & CEO, Dr. Rajeeb “Raj” Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, join Raj on the main stage to discover the progress we’ve made over the last year in advancing quantum computing on both commercial and technical fronts and be the first to hear exciting insights on what’s to come from Quantinuum.
Panel Session: Policy Priorities for Responsible Quantum and AI
1:00 – 1:30pm ET | Maplewood Hall
As part of the Track Sessions on Government & Security, Quantinuum’s Director of Government Relations, Ryan McKenney, will discuss “Policy Priorities for Responsible Quantum and AI” with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.
Fireside Chat: Establishing a Pro-Innovation Regulatory Framework
4:00 – 4:30pm ET | Vault Theater
During the Track Session on Industry Advancement, Quantinuum’s Chief Legal Officer, Kaniah Konkoly-Thege, and Director of Government Relations, Ryan McKenney, will take the stage to discuss the importance of “Establishing a Pro-Innovation Regulatory Framework”.
In the world of physics, ideas can lie dormant for decades before revealing their true power. What begins as a quiet paper in an academic journal can eventually reshape our understanding of the universe itself.
In 1993, nestled deep in the halls of Yale University, physicist Subir Sachdev and his graduate student Jinwu Ye stumbled upon such an idea. Their work, originally aimed at unraveling the mysteries of “spin fluids”, would go on to ignite one of the most surprising and profound connections in modern physics—a bridge between the strange behavior of quantum materials and the warped spacetime of black holes.
Two decades after the paper was published, it would be pulled into the orbit of a radically different domain: quantum gravity. Thanks to work by renowned physicist Alexei Kitaev in 2015, the model found new life as a testing ground for the mind-bending theory of holography—the idea that the universe we live in might be a projection, from a lower-dimensional reality.
Holography is an exotic approach to understanding reality where scientists use holograms to describe higher dimensional systems in one less dimension. So, if our world is 3+1 dimensional (3 spatial directions plus time), there exists a 2+1, or 3-dimensional description of it. In the words of Leonard Susskind, a pioneer in quantum holography, "the three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface."
The “SYK” model, as it is known today, is now considered a quintessential framework for studying strongly correlated quantum phenomena, which occur in everything from superconductors to strange metals—and even in black holes. In fact, The SYK model has also been used to study one of physics’ true final frontiers, quantum gravity, with the authors of the paper calling it “a paradigmatic model for quantum gravity in the lab.”
The SYK model involves Majorana fermions, a type of particle that is its own antiparticle. A key feature of the model is that these fermions are all-to-all connected, leading to strong correlations. This connectivity makes the model particularly challenging to simulate on classical computers, where such correlations are difficult to capture. Our quantum computers, however, natively support all-to-all connectivity making them a natural fit for studying the SYK model.
Now, 10 years after Kitaev’s watershed lectures, we’ve made new progress in studying the SYK model. In a new paper, we’ve completed the largest ever SYK study on a quantum computer. By exploiting our system’s native high fidelity and all-to-all connectivity, as well as our scientific team’s deep expertise across many disciplines, we were able to study the SYK model at a scale three times larger than the previous best experimental attempt.
While this work does not exceed classical techniques, it is very close to the classical state-of-the-art. The biggest ever classical study was done on 64 fermions, while our recent result, run on our smallest processor (System Model H1), included 24 fermions. Modelling 24 fermions costs us only 12 qubits (plus one ancilla) making it clear that we can quickly scale these studies: our System Model H2 supports 56 qubits (or ~100 fermions), and Helios, which is coming online this year, will have over 90 qubits (or ~180 fermions).
However, working with the SYK model takes more than just qubits. The SYK model has a complex Hamiltonian that is difficult to work with when encoded on a computer—quantum or classical. Studying the real-time dynamics of the SYK model means first representing the initial state on the qubits, then evolving it properly in time according to an intricate set of rules that determine the outcome. This means deep circuits (many circuit operations), which demand very high fidelity, or else an error will occur before the computation finishes.
Our cross-disciplinary team worked to ensure that we could pull off such a large simulation on a relatively small quantum processor, laying the groundwork for quantum advantage in this field.
First, the team adopted a randomized quantum algorithm called TETRIS to run the simulation. By using random sampling, among other methods, the TETRIS algorithm allows one to compute the time evolution of a system without the pernicious discretization errors or sizable overheads that plague other approaches. TETRIS is particularly suited to simulating the SYK model because with a high level of disorder in the material, simulating the SYK Hamiltonian means averaging over many random Hamiltonians. With TETRIS, one generates random circuits to compute evolution (even with a deterministic Hamiltonian). Therefore, when applying TETRIS on SYK, for every shot one can just generate a random instance of the Hamiltonain, and generate a random circuit on TETRIS at the same time. This simple approach enables less gate counts required per shot, meaning users can run more shots, naturally mitigating noise.
In addition, the team “sparsified” the SYK model, which means “pruning” the fermion interactions to reduce the complexity while still maintaining its crucial features. By combining sparsification and the TETRIS algorithm, the team was able to significantly reduce the circuit complexity, allowing it to be run on our machine with high fidelity.
They didn’t stop there. The team also proposed two new noise mitigation techniques, ensuring that they could run circuits deep enough without devolving entirely into noise. The two techniques both worked quite well, and the team was able to show that their algorithm, combined with the noise mitigation, performed significantly better and delivered more accurate results. The perfect agreement between the circuit results and the true theoretical results is a remarkable feat coming from a co-design effort between algorithms and hardware.
As we scale to larger systems, we come closer than ever to realizing quantum gravity in the lab, and thus, answering some of science’s biggest questions.
At Quantinuum, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.
A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or “state prep,” is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.
Recently, our algorithm teams have been tackling this challenge from all angles. We’ve published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.
In the first paper, our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.
To do this, our team investigated two different state prep methods. The first method uses Givens rotations, implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.
Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the “sparse state preparation” scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.
In the second paper, our team focused on state prep for materials simulation. Generally, it’s much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.
In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.
Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature – and approaches like this are what will allow us to perform the necessary studies to one day get us there.
Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the third paper, our team made fault-tolerant state preparation—the critical first step in any fault-tolerant algorithm—roughly twice as efficient. With our new “flag at origin” technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.
The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, we’ve figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.
On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our team’s work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystem—and is quite timely given our recent advances into true fault-tolerance.
This generality isn’t just applicable to different codes, it’s also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This “state diversity” is especially valuable when working with the best codes – codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.
From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.