Quantinuum Introduces InQuanto

Explore Industrially Relevant Chemistry Problems on Today’s Quantum Computers

May 24, 2022

Cambridge, UK and Broomfield, Colorado, May 24th, 2022 Quantinuum, the global quantum computing company, today announced the release of InQuanto, a state-of-the-art quantum computational chemistry software platform that makes it easy for computational chemists to experiment with a wide range of quantum algorithms on today’s quantum computers.

InQuanto is available for the first time as a standalone platform to commercial organizations, bringing together the latest quantum computing tools in a single application. It was developed and deployed by Quantinuum’s quantum chemistry team to support collaborations with partners such as BMW, Honeywell, JSR, Nippon Steel Corporation, and TotalEnergies to explore quantum computing use cases specific to their industry. They have used it to understand the potential of quantum computing to improve the accuracy of complex molecular and materials simulations in their fields.

InQuanto enables users to mix and match the latest quantum algorithms, advanced subroutines, and chemistry-specific noise-mitigation techniques to make the best use of today's quantum computers. The platform also helps computational chemists to break down larger industrially relevant systems into smaller fragments that can run on today’s small-scale quantum machines. It uses Quantinuum's open-source toolkit, TKET, to reduce the computational requirements for electronic structure simulations and maximize performance across the widest range of quantum devices and simulators.

“Quantum computing offers a path to rapid and cost-effective development of new molecules and materials that could unlock novel answers to some of the biggest challenges we face,” said Patrick Moorhead, CEO and Chief Analyst of Moor Insights and Strategy. “The way to ensure progress is to start prototyping now, using real-world use cases, so that methods are tailored to solving actual needs of the industry. InQuanto is built to enable exactly this.”

BMW and Quantinuum have worked together using the InQuanto platform to simulate electrode reactions in hydrogen fuel cells, with the goal of achieving the highest fidelity on today's machines. The collaboration has focused on modeling the oxygen reduction reaction. It has provided insights into how quantum computers could help with the future design of efficient catalysts and electrodes.

Elvira Shishenina, Quantum Computing Lead at BMW Group New Technologies and Innovation, said, "The path to future progress in materials modeling using quantum computers relies on a deep understanding of both the technology and our applications. Bringing together the fuel cells expertise and highly predictive quantum computing simulations could enhance the new materials development towards zero-physical prototyping.”

Through Quantinuum’s research and development (R&D) collaborations with global partners, the technology now available through InQuanto has led to the achievement of a number of firsts: it explored for the first time the quantification of drug-protein interactions using today’s emerging quantum devices; in a collaboration with Nippon Steel Corporation, it proved its capabilities in the simulation of materials such as iron crystals for steel development; and in a paper published with TotalEnergies, it was used to model metal-organic frameworks for carbon capture.  

Ilyas Khan, CEO of Quantinuum said: “We are deeply excited about the news today. InQuanto is a perfect example of a product developed with the active support of the leaders across every sector deeply involved in quantum chemistry. We have created a dedicated quantum computing product for computational chemists looking for the bridge between classical computing, which they know well, and quantum techniques, which show so much promise.”​  

Rei Sakuma, Principal Researcher of the Materials Informatics Initiative at JSR Corporation, said: "JSR entered into a close partnership with Quantinuum very early on. We participated in the beta testing of InQuanto (formerly EUMEN) and have used it primarily for research and development on novel materials and property prediction. InQuanto is very easy to use, even for researchers and engineers without a deep knowledge of quantum computing. In the future, we would like to use InQuanto not only in research and development but also in actual manufacturing sites, based on the premise of further performance improvement of quantum computers.”

In another project, Quantinuum, together with Honeywell, applied InQuanto to investigate the applicability of quantum computing to the design of novel refrigerants. These complex compounds, widely used in many industries, are chosen for properties such as low toxicity, low flammability, and stability, as well as low global warming potential (GWP) and no ozone depletion potential. Finding new, environmentally friendly refrigerants is a critical challenge for future sustainable solutions. The collaboration modeled a reaction between methane gas, a simple refrigerant, and a simple atmospheric radical using capabilities built into InQuanto.

Gavin Towler, Chief Technology Officer for Honeywell PMT, said: “Honeywell is leaning forward to understand how we use quantum computing capabilities for our business. Tools like InQuanto will play a valuable role in inventing and discovering new chemicals with improved environmental performance.”

Quantinuum is also partnering with Mitsui & Co. and building on its global industrial reach in order to accelerate the InQuanto offering to industrial customers and researchers in Japan and the broader Asia-Pacific region.

Simon Toda, General Manager of Digital Technology Strategy Dept., Integrated Digital Strategy Div. at Mitsui & Co., said: “We are extremely excited to be working with Quantinuum, a global pioneer of quantum computing. We believe the InQuanto platform will bring great innovation to the research and development activities in the chemical industry. With our broad business assets and unique position in the industry and region, we are supporting our customers to create new, innovative value together with Quantinuum.”

Introduction to InQuanto on Medium: https://medium.com/cambridge-quantum-computing/introduction-to-the-inquanto-computational-chemistry-platform-for-quantum-computers-4fced08d66cc  

For more information:

To learn more on how you can work with Quantinuum to jumpstart your use case exploration with the InQuanto platform, contact us at inquanto@quantinuum.com. For more information on InQuanto, visit: https://www.quantinuum.com/products/inquanto. The InQuanto license can include access to the Quantinuum System Model H1, powered by Honeywell, ion trap-based quantum computing hardware.

About Quantinuum

Quantinuum is the world’s largest integrated quantum computing company, formed by the combination of Honeywell Quantum Solutions’ world-leading hardware and Cambridge Quantum’s class-leading middleware and applications.

Quantinuum employs over 400 people, including 300 scientists, at eight sites in the US, Europe, and Japan.

Science led and enterprise driven, Quantinuum accelerates quantum computing and the development of applications across chemistry, cybersecurity, finance, and optimization. Quantinuum’s focus is to create scalable and commercial quantum solutions to solve the world’s most pressing problems in fields such as energy, logistics, climate change, and health.

Quantinuum’s open-source developer toolkit TKET provides platform-inclusive access to the world’s leading quantum hardware and simulators and enhances the performance of every Quantinuum product, including cybersecurity key-generation platform, Quantum Origin; quantum computational chemistry and materials science package, InQuanto; and λambeq, Quantinuum's quantum natural language processing and computational linguistics toolkit.

Quantinuum’s H1 generation quantum computer, Powered by Honeywell, is one of the most advanced in the world and was the first to pass the industry standard quantum volume 4096 benchmark. In March 2020, Quantinuum (as Honeywell Quantum Solutions) committed to increasing the quantum volume of its commercial H-Series quantum computers by an order of magnitude each year for the subsequent five years.

The Honeywell Trademark is used under license from Honeywell International Inc. Honeywell International Inc. makes no representations or warranties with respect to this product. This product is produced by Quantinuum.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

April 3, 2025
Quantinuum Selected by DARPA to Advance to First Stage of Quantum Benchmarking Initiative

Broomfield, CO, April 3rd, 2025 — Quantinuum, the industry leader in quantum computing with the world’s most powerful quantum computer, has been selected by the Defense Advanced Research Projects Agency (DARPA), a research and development agency of the United States Department of Defense, to participate in the first stage of the agency’s Quantum Benchmarking Initiative (QBI).

QBI aims to assess the feasibility of building an industrially useful quantum computer by 2033. Successful QBI performers will advance through stages A, B, and C; Stage A requires performers to describe their utility-scale quantum computer with a path to near-term realization, where utility-scale means the computational value exceeds costs.

As validated in a recent independent benchmarking study by a group of institutions at the forefront of quantum computing research, Quantinuum’s quantum systems are the highest performing in the industry. Last year, Quantinuum published its development roadmap, outlining a path to a universal, fully-fault tolerant quantum computer by 2029. Beyond this public roadmap, Quantinuum plans to scale to even larger machines in the early part of the 2030s, aligning with the objectives of QBI.

“We are honored to collaborate with DARPA and look forward to working closely with their test and evaluation team as they assess our roadmap and technological approach,” said Dr. Rajeeb Hazra, President and CEO of Quantinuum. “With our roadmap firmly on track, we are confident in our ability to deliver on DARPA’s objectives for QBI.”

Microsoft and NVIDIA will take part in Quantinuum’s Stage A effort, building on their long-standing collaborations with Quantinuum in advancing commercially scalable quantum computing.

About Quantinuum

Quantinuum is the world leader in quantum computing. The company’s quantum systems deliver the highest performance across all industry benchmarks. Quantinuum’s over 550 employees, including 370+ scientists and engineers, across the US, UK, Germany, and Japan, are driving the quantum computing revolution.  

This is some text inside of a div block.
All
This is some text inside of a div block.
All
This is some text inside of a div block.
All
April 2, 2025
Quantinuum’s ‘Quantum Origin’ Becomes First Software Quantum Random Number Generator to Achieve NIST Validation

Broomfield, CO, April 2nd, 2025 — Quantinuum, the industry leader in quantum computing with the world’s highest performing quantum computer, today announced that  Quantum Origin, the company’s software Quantum Random Number Generator (QRNG), has received National Institute of Standards and Technology (NIST) validation. Quantum Origin is the first software QRNG to achieve this validation, establishing it as a crucial tool for federal agencies and agency partners in their mandated migration to post-quantum cryptography (PQC) under National Security Memorandum 10. This achievement will help strengthen cybersecurity in the age of PQC.

Quantum Origin generates mathematically proven randomness — a capability unmatched by hardware-based QRNGs or traditional pseudo-random number generators. Unlike hardware solutions that require specialized equipment and can be affected by environmental factors, Quantum Origin delivers consistent, proven randomness through flexible software deployment. Proven quantum randomness is an essential foundation for comprehensive quantum security strategy alongside PQC.

"The evolving threat landscape demands a new era of cybersecurity solutions for governments, enterprises, and critical infrastructure," said Dr. Rajeeb Hazra, President and CEO of Quantinuum. "Quantinuum is at the forefront of this transformation, driving innovation in quantum cybersecurity. Our recent certified randomness demonstration with JPMorganChase, and our NIST-validated Quantum Origin platform are just two examples of how we are deepening our portfolio to meet this critical need."

Quantum Origin is delivered entirely as self-contained software, making it adaptable to diverse environments from cloud solutions to highly sensitive systems. It can be deployed with zero network connectivity, enabling protection for air-gapped networks and confidential environments where traditional hardware-based QRNGs cannot operate effectively. It provides quantum-enhanced security without impacting the size, weight, and power (SWaP) requirements of existing systems, a critical consideration for resource-constrained deployments.

U.S. Made using Quantinuum's quantum computers based in Colorado, Quantum Origin helps mitigate supply chain risks associated with foreign-sourced hardware components. It is designed to integrate seamlessly with existing NIST-approved cryptographic systems without requiring recertification. With this NIST validation, organizations can now accelerate their adoption of quantum-enhanced security within existing compliance frameworks.

Visit https://www.quantinuum.com/quantum-origin to learn how Quantum Origin can strengthen federal and enterprise cryptographic systems today.

About Quantinuum

Quantinuum is the world leader in quantum computing. The company’s quantum systems deliver the highest performance across all industry benchmarks. Quantinuum’s over 550 employees, including 370+ scientists and engineers, across the US, UK, Germany, and Japan, are driving the quantum computing revolution.

This is some text inside of a div block.
All
This is some text inside of a div block.
All
This is some text inside of a div block.
All
March 26, 2025
JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of quantum computing to potential real-world use cases beyond the capabilities of classical computing
This is some text inside of a div block.
All
This is some text inside of a div block.
All
This is some text inside of a div block.
All