JPMorgan Chase, Argonne National Laboratory and Quantinuum Show Theoretical Quantum Speedup with the Quantum Approximate Optimization Algorithm

May 29, 2024

NEW YORK, NY; BROOMFIELD, CO; LEMONT, IL; MAY 29, 2024 - In a new paper in Science Advances on May 29, researchers at JPMorgan Chase, the U.S. Department of Energy’s (DOE) Argonne National Laboratory and Quantinuum have demonstrated clear evidence of a quantum algorithmic speedup for the quantum approximate optimization algorithm (QAOA). 

This algorithm has been studied extensively and has been implemented on many quantum computers. It has potential applications in fields such as logistics, telecommunications, financial modeling, and materials science.

“This work is a significant step towards reaching quantum advantage, laying the foundation for future impact in production,” says Marco Pistoia, Head of Global Technology Applied Research at JPMorgan Chase.

The team examined whether a quantum algorithm with low implementation costs could provide a quantum speedup over the best-known classical methods. QAOA was applied to the Low Autocorrelation Binary Sequences (LABS) problem, which has significance in understanding the behavior of physical systems, signal processing and cryptography. The study showed that if the algorithm was asked to tackle increasingly larger problems, the time it would take to solve them would grow at a slower rate than that of a classical solver.

To explore the quantum algorithm’s performance in an ideal noiseless setting, JPMorgan Chase and Argonne jointly developed a simulator to evaluate the algorithm’s performance at scale. It was built on the Polaris supercomputer, accessed through the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science user facility. The ALCF is supported by DOE’s Advanced Scientific Computing Research program.

“The large-scale quantum circuit simulations efficiently utilized the DOE petascale supercomputer Polaris located at the ALCF. These results show how high-performance computing can complement and advance the field of quantum information science,” says Yuri Alexeev, a computational scientist at Argonne.

To take the first step toward practical realization of the speedup in the algorithm, the researchers demonstrated a small-scale implementation on Quantinuum’s System Model H1 and H2 trapped-ion quantum computers. Using algorithm-specific error detection, the team reduced the impact of errors on algorithmic performance by up to 65%. 

“Our long-standing partnership with JPMorgan Chase led to this meaningful and noteworthy three-way research experiment that also brought in Argonne National Lab. The results could not have been achieved without the unprecedented and world leading quality of our H-Series Quantum Computer, which provides a flexible device for executing error-correcting and error-detecting experiments on top of gate fidelities that are years ahead of other quantum computers,” says Ilyas Khan, Founder and Chief Product Officer of Quantinuum.

Read the full research paper here.

About JPMorgan Chase

JPMorgan Chase & Co. (NYSE: JPM) is a leading financial services firm based in the United States of America (“U.S.”), with operations worldwide. JPMorgan Chase had $4.1 trillion in assets and $337 billion in stockholders’ equity as of March 31, 2024. With over 63,000 technologists globally and an annual tech spend of $17 billion, JPMorgan Chase is dedicated to improving the design, analytics, development, coding, testing and application programming that goes into creating high quality software and new products. Under the J.P. Morgan and Chase brands, the Firm serves millions of customers in the U.S., and many of the world’s most prominent corporate, institutional and government clients globally. Visit http://www.jpmorganchase.com/tech for more information.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology by conducting leading-edge basic and applied research in virtually every scientific discipline. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With almost 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.

Quantinuum recently closed an equity fundraise anchored by JPMorgan Chase with additional participation from Mitsui & CO., Amgen and Honeywell, which remains the company’s majority shareholder, bringing the total capital raised by Quantinuum since inception to approximately $625 million.

The Honeywell trademark is used under license from Honeywell International Inc. Honeywell makes no representations or warranties with respect to this service.

arrow

arrow

arrow
Kaniah Konkoly-Thege

Kaniah is Chief Legal Counsel and SVP of Government Relations for Quantinuum. In her previous role, she served as General Counsel, Honeywell Quantum Solutions. Prior to Honeywell, she was General Counsel, Honeywell Federal Manufacturing and Technologies, LLC, and Senior Attorney, U.S. Department of Energy. She was Lead Counsel before the Civilian Board of Contract Appeals, the Merit Systems Protection Board, and the Equal Employment Opportunity Commission. Kaniah holds a J.D. from American University, Washington College of Law and B.A., International Relations and Spanish from the College of William and Mary.

Jeff Miller

Jeff Miller is Chief Information Officer for Quantinuum. In his previous role, he served as CIO for Honeywell Quantum Solutions and led a cross-functional team responsible for Information Technology, Cybersecurity, and Physical Security. For Honeywell, Jeff has held numerous management and executive roles in Information Technology, Security, Integrated Supply Chain and Program Management. Jeff holds a B.S., Computer Science, University of Arizona. He is a veteran of the U.S. Navy, attaining the rank of Commander.

Matthew Bohne

Matthew Bohne is the Vice President & Chief Product Security Officer for Honeywell Corporation. He is a passionate cybersecurity leader and executive with a proven track record of building and leading cybersecurity organizations securing energy, industrial, buildings, nuclear, pharmaceutical, and consumer sectors. He is a sought-after expert with deep experience in DevSecOps, critical infrastructure, software engineering, secure SDLC, supply chain security, privacy, and risk management.

Todd Moore

Todd Moore is the Global Vice President of Data Encryption Products at Thales. He is responsible for setting the business line and go to market strategies for an industry leading cybersecurity business. He routinely helps enterprises build solutions for a wide range of complex data security problems and use cases. Todd holds several management and technical degrees from the University of Virginia, Rochester Institute of Technology, Cornell University and Ithaca College. He is active in his community, loves to travel and spends much of his free time supporting his family in pursuing their various passions.

John Davis

Retired U.S. Army Major General John Davis is the Vice President, Public Sector for Palo Alto Networks, where he is responsible for expanding cybersecurity initiatives and global policy for the international public sector and assisting governments around the world to prevent successful cyber breaches. Prior to joining Palo Alto Networks, John served as the Senior Military Advisor for Cyber to the Under Secretary of Defense for Policy and served as the Acting Deputy Assistant Secretary of Defense for Cyber Policy.  Prior to this assignment, he served in multiple leadership positions in special operations, cyber, and information operations.