By Ilyas Khan, Chief Product Officer and Jenni Strabley, Senior Director Offering Management
Quantinuum and Microsoft have announced a vital breakthrough in quantum computing that Microsoft described as “a major achievement for the entire quantum ecosystem.”
By combining Microsoft’s innovative qubit-virtualization system with the unique architectural features and fidelity of Quantinuum’s System Model H2 quantum computer, our teams have demonstrated the most reliable logical qubits on record with logical circuit error rates 800 times lower than the corresponding physical circuit error rates.
This achievement is not just monumental for Quantinuum and Microsoft, but it is a major advancement for the entire quantum ecosystem. It is a crucial milestone on the path to building a hybrid supercomputing system that can truly transform research and innovation across many industries for decades to come. It also further bolsters H2’s title as the highest performing quantum computer in the world.
Entering a new era of quantum computing
Historically, there have been widely held assumptions about the physical qubits needed for large scale fault-tolerant quantum computing and the timeline to quantum computers delivering real-world value. It was previously thought that an achievement like this one was still years away from realization – but together, Quantinuum and Microsoft proved that fault-tolerant quantum computing is in fact a reality.
In enabling today’s announcement, Quantinuum’s System Model H2 becomes the first quantum computer to advance to Microsoft’s Level 2 – Resilient phase of quantum computing – an incredible milestone. Until now, no other computer had been capable of producing reliable logical qubits.
Using Microsoft’s qubit-virtualization system, our teams used reliable logical qubits to perform 14,000 individual instances of a quantum circuit with no errors, an overall result that is unprecedented. Microsoft also demonstrated multiple rounds of active syndrome extraction – an essential error correction capability for measuring and detecting the occurrence of errors without destroying the quantum information encoded in the logical qubit.
As we prepare to bring today’s logical quantum computing breakthrough to commercial users, there is palpable anticipation about what this new era means for our partners, customers, and the global quantum computing ecosystem that has grown up around our hardware, middleware, and software.
To understand this achievement, it is helpful to shed some light on the joint work that went into it. Our breakthrough would not have been possible without the close collaboration of the two exceptional teams at Quantinuum and Microsoft over many years.
Building on a relationship that stretches back five years, we collaborated with Microsoft Azure Quantum at a very deep level to best execute their innovative qubit-virtualization system, including error diagnostics and correction. The Microsoft team was able to optimize their error correction innovation, reducing an original estimate of 300 required physical qubits 10-fold, to create four logical qubits with only 30 physical qubits, bringing it into scope for the 32-qubit H2 quantum computer.
This massive compression of the code and efficient virtualization challenges a consensus view about the resources needed to do fault-tolerant quantum computing, where it has been routinely stated that a logical qubit will require hundreds, even thousands of physical qubits. Through our collaboration, Microsoft’s far more efficient encoding was made possible by architectural features unique to the System Model H2, including our market-leading 99.8% two-qubit gate fidelity, 32 fully-connected qubits, and compatibility with Quantum Intermediate Representation (QIR).
Thanks to this powerful combination of collaboration, engineering excellence, and resource efficiency, quantum computing has taken a major step into a new era, introducing reliable logical qubits which will soon be available to industrial and research users.
It is widely recognized that for a quantum computer to be useful, it must be able to compute correctly even when errors (or faults) occur – this is what scientists and engineers describe as fault-tolerance.
In classical computing, fault-tolerance is well-understood and we have come to take it for granted. We always assume that our computers will be reliable and fault-free. Multiple advances over the course of decades have led to this state of affairs, including hardware that is incredibly robust and error rates that are very low, and classical error correction schemes that are based on the ability to copy information across multiple bits, to create redundancy.
Getting to the same point in quantum computing is more challenging, although the solution to this problem has been known for some time. Qubits are incredibly delicate since one must control the precise quantum states of single atoms, which are prone to errors. Additionally, we must abide by a fundamental law of quantum physics known as the no cloning theorem, which says that you can’t just copy qubits – meaning some of the techniques used in classical error correction are unavailable in quantum machines.
The solution involves entangling groups of physical qubits (thereby creating a logical qubit), storing the relevant quantum information in the entangled state, and, via some complex functions, performing computations with error correction. This process is all done with the sole purpose of creating logical qubit errors lower than the errors at the physical level.
However, implementing quantum error correction requires a significant number of qubit operations. Unless the underlying physical fidelity is good enough, implementing a quantum error correcting code will add more noise to your circuit than it takes away. No matter how clever you are in implementing a code, if your physical fidelity is poor, the error correcting code will only introduce more noise. But, once your physical fidelity is good enough (aka when the physical error rate is “below threshold”), then you will see the error correcting code start to actually help: producing logical errors below the physical errors.
Today’s results are an exciting marker on the path to fault-tolerant quantum computing. The focus must and will now shift from quantum computing companies simply stating the number of qubits they have to explaining their connectivity, the underlying quality of the qubits with reference to gate fidelities, and their approach to fault-tolerance.
Our H-Series hardware roadmap has not only focused on scaling qubits, but also developing useable quantum computers that are part of a vertically integrated stack. Our work across the full stack includes major advances at every level, for instance just last month we proved that our qubits could scale when we announced solutions to the wiring problem and the sorting problem. By maintaining higher qubit counts and world class fidelity, our customers and partners are able to advance further and faster in fields such as material science, drug discovery, AI and finance.
In 2025, we will introduce a new H-Series quantum computer, Helios, that takes the very best the H-Series has to offer, improving both physical qubit count and physical fidelity. This will take us and our users below threshold for a wider set of error correcting codes and make that device capable of supporting at least 10 highly reliable logical qubits.
A path to real-world impact
As we build upon today’s milestone and lead the field on the path to fault-tolerance, we are committed to continuing to make significant strides in the research that enables the rapid advance of our technologies. We were the first to demonstrate real-time quantum error correction (meaning a fully-fault tolerant QEC protocol), a result that meant we were the first to show: repeated real-time error correction, the ability to perform quantum "loops" (repeat-until-success protocols), and real-time decoding to determine the corrections during the computation. We were the first to create non-Abelian topological quantum matter and braid its anyons, leading to topological qubits.
The native flexibility of our QCCD architecture has allowed us to efficiently investigate a large variety of fault-tolerant methods, and our best-in-class fidelity means we expect to lead the way in achieving reduced error rates with additional error correcting codes – and supporting our partners to do the same. We are already working on making reliable quantum computing a commercial reality so that our customers and partners can unlock the enormous real-world economic value that is waiting to be unleashed by the development of these systems.
In the short term – with a hybrid supercomputer powered by a hundred reliable logical qubits, we believe that organizations will be able to start to see scientific advantages and will be able to accelerate valuable progress toward some of the most important problems that mankind faces such as modelling the materials used in batteries and hydrogen fuel cells or accelerating the development of meaning-aware AI language models. Over the long-term, if we are able to scale closer to ~1,000 reliable logical qubits, we will be able to unlock the commercial advantages that can ultimately transform the commercial world.
Quantinuum customers have always been able to operate the most cutting-edge quantum computing, and we look forward to seeing how they, and our own world-leading teams, drive ahead developing new solutions based on the state-of-the-art tools we continue to put into their hands. We were the early leaders in quantum computing and now we are thrilled to be positioned at the forefront of fault-tolerant quantum computing. We are excited to see what today’s milestone unlocks for our customers in the days ahead.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.
Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.
Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.
Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.
To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.
As the authors of the paper state:
“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”
Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.
Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.
These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.
Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.
With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.
The marriage of AI and quantum computing is going to have a widespread and meaningful impact in many aspects of our lives, combining the strengths of both fields to tackle complex problems.
Quantum and AI are the ideal partners. At Quantinuum, we are developing tools to accelerate AI with quantum computers, and quantum computers with AI. According to recent independent analysis, our quantum computers are the world’s most powerful, enabling state-of-the-art approaches like Generative Quantum AI (Gen QAI), where we train classical AI models with data generated from a quantum computer.
We harness AI methods to accelerate the development and performance of our full quantum computing stack as opposed to simply theorizing from the sidelines. A paper in Nature Machine Intelligence reveals the results of a recent collaboration between Quantinuum and Google DeepMind to tackle the hard problem of quantum compilation.
The work shows a classical AI model supporting quantum computing by demonstrating its potential for quantum circuit optimization. An AI approach like this has the potential to lead to more effective control at the hardware level, to a richer suite of middleware tools for quantum circuit compilation, error mitigation and correction, even to novel high-level quantum software primitives and quantum algorithms.
The joint Quantinuum-Google DeepMind team of researchers tackled one of quantum computing’s most pressing challenges: minimizing the number of highly expensive but essential T-gates required for universal quantum computation. This is important specifically for the fault-tolerant regime, which is becoming increasingly relevant as quantum error correction protocols are being explored on rapidly developing quantum hardware. The joint team of researchers adapted AlphaTensor, Google DeepMind’s reinforcement learning AI system for algorithm discovery, which was introduced to improve the efficiency of linear algebra computations. The team introduced AlphaTensor-Quantum, which takes as input a quantum circuit and returns a new, more efficient one in terms of number of T-gates, with exactly the same functionality!
AlphaTensor-Quantum outperformed current state-of-the art optimization methods and matched the best human-designed solutions across multiple circuits in a thoroughly curated set of circuits, chosen for their prevalence in many applications, from quantum arithmetic to quantum chemistry. This breakthrough shows the potential for AI to automate the process of finding the most efficient quantum circuit. This is the first time that such an AI model has been put to the problem of T-count reduction at such a large scale.
The symbiotic relationship between quantum and AI works both ways. When AI and quantum computing work together, quantum computers could dramatically accelerate machine learning algorithms, whether by the development and application of natively quantum algorithms, or by offering quantum-generated training data that can be used to train a classical AI model.
Our recent announcement about Generative Quantum AI (Gen QAI) spells out our commitment to unlocking the value of the data generated by our H2 quantum computer. This value arises from the world’s leading fidelity and computational power of our System Model H2, making it impossible to exactly simulate on any classical computer, and therefore the data it generates – that we can use to train AI – is inaccessible by any other means. Quantinuum’s Chief Scientist for Algorithms and Innovation, Prof. Harry Buhrman, has likened accessing the first truly quantum-generated training data to the invention of the modern microscope in the seventeenth century, which revealed an entirely new world of tiny organisms thriving unseen within a single drop of water.
Recently, we announced a wide-ranging partnership with NVIDIA. It charts a course to commercial scale applications arising from the partnership between high-performance classical computers, powerful AI systems, and quantum computers that breach the boundaries of what previously could and could not be done. Our President & CEO, Dr. Raj Hazra spoke to CNBC recently about our partnership. Watch the video here.
As we prepare for the next stage of quantum processor development, with the launch of our Helios system in 2025, we’re excited to see how AI can help write more efficient code for quantum computers – and how our quantum processors, the most powerful in the world, can provide a backend for AI computations.
As in any truly symbiotic relationship, the addition of AI to quantum computing equally benefits both sides of the equation.
To read more about Quantinuum and Google DeepMind’s collaboration, please read the scientific paper here.
Few things are more important to the smooth functioning of our digital economies than trustworthy security. From finance to healthcare, from government to defense, quantum computers provide a means of building trust in a secure future.
Quantinuum and its partners JPMorganChase, Oak Ridge National Laboratory, Argonne National Laboratory and the University of Texas used quantum computers to solve a known industry challenge, generating the “random seeds” that are essential for the cryptography behind all types of secure communication. As our partner and collaborator, JPMorganChase explain in this blog post that true randomness is a scarce and valuable commodity.
This year, Quantinuum will introduce a new product based on this development that has long been anticipated, but until now thought to be some years away from reality.
It represents a major milestone for quantum computing that will reshape commercial technology and cybersecurity: Solving a critical industry challenge by successfully generating certifiable randomness.
Building on the extraordinary computational capabilities of Quantinuum’s H2 System – the highest-performing quantum computer in the world – our team has implemented a groundbreaking approach that is ready-made for industrial adoption. Nature today reported the results of a proof of concept with JPMorganChase, Oak Ridge National Laboratory, Argonne National Laboratory, and the University of Texas alongside Quantinuum. It lays out a new quantum path to enhanced security that can provide early benefits for applications in cryptography, fairness, and privacy.
By harnessing the powerful properties of quantum mechanics, we’ve shown how to generate the truly random seeds critical to secure electronic communication, establishing a practical use-case that was unattainable before the fidelity and scalability of the H2 quantum computer made it reliable. So reliable, in fact, that it is now possible to turn this into a commercial product.
Quantinuum will integrate quantum-generated certifiable randomness into our commercial portfolio later this year. Alongside Generative Quantum AI and our upcoming Helios system – capable of tackling problems a trillion times more computationally complex than H2 – Quantinuum is further cementing its leadership in the rapidly-advancing quantum computing industry.
Cryptographic security, a bedrock of the modern economy, relies on two essential ingredients: standardized algorithms and reliable sources of randomness – the stronger the better. Non-deterministic physical processes, such as those governed by quantum mechanics, are ideal sources of randomness, offering near-total unpredictability and therefore, the highest cryptographic protection. Google, when it originally announced it had achieved quantum supremacy, speculated on the possibility of using the random circuit sampling (RCS) protocol for the commercial production of certifiable random numbers. RCS has been used ever since to demonstrate the performance of quantum computers, including a milestone achievement in June 2024 by Quantinuum and JPMorganChase, demonstrating their first quantum computer to defy classical simulation. More recently RCS was used again by Google for the launch of its Willow processor.
In today’s announcement, our joint team used the world’s highest-performing quantum and classical computers to generate certified randomness via RCS. The work was based on advanced research by Shih-Han Hung and Scott Aaronson of the University of Texas at Austin, who are co-authors on today’s paper.
Following a string of major advances in 2024 – solving the scaling challenge, breaking new records for reliability in partnership with Microsoft, and unveiling a hardware roadmap, today proves how quantum technology is capable of creating tangible business value beyond what is available with classical supercomputers alone.
What follows is intended as a non-technical explainer of the results in today’s Nature paper.
For security sensitive applications, classical random number generation is unsuitable because it is not fundamentally random and there is a risk it can be “cracked”. The holy grail is randomness whose source is truly unpredictable, and Nature provides just the solution: quantum mechanics. Randomness is built into the bones of quantum mechanics, where determinism is thrown out the door and outcomes can be true coin flips.
At Quantinuum, we have a strong track record in developing methods for generating certifiable randomness using a quantum computer. In 2021, we introduced Quantum Origin to the market, as a quantum-generated source of entropy targeted at hardening classically-generated encryption keys, using well known quantum technologies that prior to that it had not been possible to use.
In their theory paper, “Certified Randomness from Quantum Supremacy”, Hung and Aaronson ask the question: is it possible to repurpose RCS, and use it to build an application that moves beyond quantum technologies and takes advantage of the power of a quantum computer running quantum circuits?
This was the inspiration for the collaboration team led by JPMorganChase and Quantinuum to draw up plans to execute the proposal using real-world technology. Here’s how it worked:
This confirmed that Quantinuum’s quantum computer is not only incapable of being matched by classical computers but can also be used reliably to produce a certifiably random seed from a quantum computer without the need to build your own device, or even trust the device you are accessing.
The use of randomness in critical cybersecurity environments will gravitate towards quantum resources, as the security demands of end users grows in the face of ongoing cyber threats.
The era of quantum utility offers the promise of radical new approaches to solving substantial and hard problems for businesses and governments.
Quantinuum’s H2 has now demonstrated practical value for cybersecurity vendors and customers alike, where non-deterministic sources of encryption may in time be overtaken by nature’s own source of randomness.
In 2025, we will launch our Helios device, capable of supporting at least 50 high-fidelity logical qubits – and further extending our lead in the quantum computing sector. We thus continue our track record of disclosing our objectives and then meeting or surpassing them. This commitment is essential, as it generates faith and conviction among our partners and collaborators, that empirical results such as those reported today can lead to successful commercial applications.
Helios, which is already in its late testing phase, ahead of being commercially available later this year, brings higher fidelity, greater scale, and greater reliability. It promises to bring a wider set of hybrid quantum-supercomputing opportunities to our customers – making quantum computing more valuable and more accessible than ever before.
And in 2025 we look forward to adding yet another product, building out our cybersecurity portfolio with a quantum source of certifiably random seeds for a wide range of customers who require this foundational element to protect their businesses and organizations.