Quantinuum President and COO Tony Uttley announced three major accomplishments during his keynote address at the IEEE Quantum Week event in Colorado last week.
The three milestones, representing actionable acceleration for the quantum computing eco-system, are: (i) new arbitrary angle gate capabilities on the H-series hardware, (ii) another QV record for the System Model H1 hardware, and (iii) over 500,000 downloads of Quantinuum’s open-sourced TKET, a world-leading quantum software development kit (SDK).
The announcements were made during Uttley’s keynote address titled, “A Measured Approach to Quantum Computing.”
These advancements are the latest examples of the company’s continued demonstration of its leadership in the quantum computing community.
“Quantinuum is accelerating quantum computing’s impact to the world,” Uttley said. “We are making significant progress with both our hardware and software, in addition to building a community of developers who are using our TKET SDK.”
This latest quantum volume measurement of 8192 is particularly noteworthy and is the second time this year Quantinuum has published a new QV record on their trapped-ion quantum computing platform, the System Model H1, Powered by Honeywell.
A key to achieving this latest record is the new capability of directly implementing arbitrary angle two-qubit gates. For many quantum circuits, this new way of doing a two-qubit gate allows for more efficient circuit construction and leads to higher fidelity results.
Dr. Brian Neyenhuis, Director of Commercial Operations at Quantinuum, said, “This new capability allows for several user advantages. In many cases, this includes shorter interactions with the qubits, which lowers the error rate. This allows our customers to run long computations with less noise.”
These arbitrary angle gates build on the overall design strength of the trapped-ion architecture of the H1, Neyenhuis said.
“With the quantum-charged coupled device (QCCD) architecture, interactions between qubits are very simple and can be limited to a small number of qubits which means we can precisely control the interaction and don’t have to worry about additional crosstalk,” he said.
This new gate design represents a third method for Quantinuum to improve the efficiency of the H1 generation, said Dr. Jenni Strabley, Senior Director of Offering Management at Quantinuum.
“Quantinuum’s goal is to accelerate quantum computing. We know we have to make the hardware better and we have to make the algorithms smarter, and we’re doing that,” she said. “Now we can also implement the algorithms more efficiently on our H1 with this new gate design.”
Currently, researchers can do single qubit gates – rotations on a single qubit – or a fully entangling two-qubit gate. It’s possible to build any quantum operation out of just those building blocks.
With arbitrary angle gates, instead of just having a two-qubit gate that's fully entangling, scientists can use a two-qubit gate that is partially entangling.
“There are many algorithms where you want to evolve the quantum state of the system one tiny step at a time. Previously, if you wanted a tiny bit of entanglement for some small time step, you had to entangle it all the way, rotate it a little bit, and then unentangle it almost all the way back,” Neyenhuis said. “Now we can just add this tiny little bit of entanglement natively and then go to the next step of the algorithm.”
There are other algorithms where this arbitrary angle two-qubit gate is the natural building block, according to Neyenhuis. One example is the quantum Fourier transform. Using arbitrary angle two-qubit gates cuts the number of two-qubit gates (and the overall error) in half, drastically improving the fidelity of the circuit. Researchers can use this new gate design to run harder problems that resulted in catastrophic errors in previous experiments.
“By going to an arbitrary angle gate, in addition to cutting the number of two-qubit gates in half, the error we get per gate is lower because it scales with the amplitude of that gate,” Neyenhuis said.
This is a powerful new capability, particularly for noisy intermediate-scale quantum algorithms. Another demonstration from the Quantinuum team was to use arbitrary angle two-qubit gates to study non-equilibrium phase transitions, the technical details of which are available on the arXiv here.
“For the algorithms that we are going to want to run in this NISQ regime that we're in right now, this is a more efficient way to run your algorithm,” Neyenhuis said. “There are lots of different circuits you would want to run where this arbitrary angle gate gives you a fairly significant increase in the fidelity of your overall circuit. This capability also allows for a speed up in the circuit execution by removing unneeded gates, which ultimately reduces the time of executing a job on our machines.”
Researchers working with machine learning algorithms, variational algorithms, and time evolution algorithms would see the most benefit from these new gates. This advancement is particularly relevant for simulating the dynamics of other quantum systems.
“This just gave us a big win in fidelity because we can run the sort of interaction you're after natively, rather than constructing it out of some other Lego blocks,” Neyenhuis said.
Quantum volume tests require running arbitrary circuits. At each slice of the quantum volume circuit, the qubits are randomly paired up and a complex two-qubit operation is performed. This SU(4) gate can be constructed more efficiently using the arbitrary angle two-qubit gate, lowering the error at each step of the algorithm.
The H1-1’s quantum volume of 8192 is due in part to the implementation of arbitrary angle gates and the continued reduction in error rates. Quantinuum’s last quantum volume increase was in April when the System Model H1-2 doubled its performance to become the first commercial quantum computer to pass Quantum Volume 4096.
This new increase is the seventh time in two years that Quantinuum’s H-Series hardware has set an industry record for measured quantum volume as it continues to achieve its goal of 10X annual improvement.
Quantum volume, a benchmark introduced by IBM in 2019, is a way to measure the performance of a quantum computer using randomized circuits, and is a frequently used metric across the industry.
Quantinuum has also achieved another milestone: over 500,000 downloads of TKET.
TKET is an advanced software development kit for writing and running programs on gate-based quantum computers. TKET enables developers to optimize their quantum algorithms, reducing the computational resources required, which is important in the NISQ era.
TKET is open source and accessible through the PyTKET Python package. The SDK also integrates with major quantum software platforms including Qiskit, Cirq and Q#. TKET has been available as an open source language for almost a year.
This universal availability and TKET’s portability across many quantum processors are critical for building a community of developers who can write quantum algorithms. The number of downloads includes many companies and academic institutions which account for multiple users.
Quantinuum CEO Ilyas Khan said, “Whilst we do not have the exact number of users of TKET, it is clear that we are growing towards a million people around the world who have taken advantage of a critical tool that integrates across multiple platforms and makes those platforms perform better. We continue to be thrilled by the way that TKET helps democratize as well as accelerate innovation in quantum computing.”
Arbitrary angle two-qubit gates and other recent Quantinuum advances are all built into TKET.
“TKET is an evolving platform and continues to take advantage of these new hardware capabilities,” said Dr. Ross Duncan, Quantinuum’s Head of Quantum Software. “We’re excited to put these new capabilities into the hands of the rapidly increasing number of TKET users around the world.”
The average single-qubit gate fidelity for this milestone was 99.9959(5)%, the average two-qubit gate fidelity was 99.71(3)% with fully connected qubits, and state preparation and measurement fidelity was 99.72(1)%. The Quantinuum team ran 220 circuits with 90 shots each, using standard QV optimization techniques to yield an average of 175.2 arbitrary angle two-qubit gates per circuit.
The System Model H1-1 successfully passed the quantum volume 8192 benchmark, outputting heavy outcomes 69.33% of the time, with a 95% confidence interval lower bound of 68.38% which is above the 2/3 threshold.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.
Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.
The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.
Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.
Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.
Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.
To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.
As the authors of the paper state:
“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”
Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.
Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.
These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.
Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.
With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.