In a meaningful advance in an important area of industrial and real-world relevance, Quantinuum researchers have demonstrated a quantum algorithm capable of solving complex combinatorial optimization problems while making the most of available quantum resources.
Results on the new H2 quantum computer evidenced a remarkable ability to solve combinatorial optimization problems with as few quantum resources as those employed by just one layer of the quantum approximate optimization algorithm (QAOA), the current and traditional workhorse of quantum heuristic algorithms.
Optimization problems are common in industry in contexts such as route planning, scheduling, cost optimization and logistics. However, as the number of variables increases and optimization problems grow larger and more complex, finding satisfactory solutions using classical algorithms becomes increasingly difficult.
Recent research suggests that certain quantum algorithms might be capable of solving combinatorial optimization problems better than classical algorithms. The realization of such quantum algorithms can therefore potentially increase the efficiency of industrial processes.
However, the effectiveness of these algorithms on near-term quantum devices and even on future generations of more capable quantum computers presents a technical challenge: quantum resources will need to be reduced as much as possible in order to protect the quantum algorithm from the unavoidable effects of quantum noise.
Sebastian Leontica and Dr. David Amaro, a senior research scientist at Quantinuum, explain their advances in a new paper, “Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits” published on arXiv. This is one of several papers published at the launch of Quantinuum’s H2, that highlight the unparalleled power of the newest generation of the H-Series, Powered by Honeywell.
“We should strive to use as few quantum resources as possible no matter how good a quantum computer we are operating on, which means using the smallest possible number of qubits that fit within the problem size and a circuit that is as shallow as possible,” Dr. Amaro said. “Our algorithm uses the fewest possible resources and still achieves good performance.”
The researchers use a parameterized instantaneous quantum polynomial (IQP) circuit of the same depth as the 1-layer QAOA to incorporate corrections that would otherwise require multiple layers. Another differentiating feature of the algorithm is that the parameters in the IQP circuit can be efficiently trained on a classical computer, avoiding some training issues of other algorithms like QAOA. Critically, the circuit takes full advantage of, and benefits from features available on Quantinuum’s devices, including parameterized two-qubit gates, all-to-all connectivity, and high-fidelity operations.
“Our numerical simulations and experiments on the new H2 quantum computer at small scale indicate that this heuristic algorithm, compared to 1-layer QAOA, is expected to amplify the probability of sampling good or even optimal solutions of large optimization problems,” Dr. Amaro said. “We now want to understand how the solution quality and runtime of our algorithm compares to the best classical algorithms.”
This algorithm will be useful for current quantum computers as well as larger machines farther along the Quantinuum hardware roadmap.
The goal of this project was to provide a quantum heuristic algorithm for combinatorial optimization that returns better solutions for optimization problems and uses fewer quantum resources than state of the art quantum heuristics. The researchers used a fully connected parameterized IQP, warm-started from 1-layer QAOA. For a problem with n binary variables the circuit contained up to n(n-1)/2 two-qubit gates and the researchers employed only 20.32n shots.
The algorithm showed improved performance on the Sherrington-Kirkpatrick (SK) optimization problem compared to the 1-layer QAOA. Numerical simulations showed an average speed up of 20.31n compared to 20.5n when looking for the optimal solution.
Experimental results on our new H2 quantum computer and emulator confirmed that the new optimization algorithm outperforms 1-layer QAOA and reliably solves complex optimization problems. The optimal solution was found for 136 out of 312 instances, four of which were for the maximum size of 32 qubits. A 30-qubit instance was solved optimally on the H2 device, which means, remarkably, that at least one of the 776 shots measured after performing 432 two-qubit gates corresponds to the unique optimal solution in the huge set of 230 > 109 candidate solutions.
These results indicate that the algorithm, in combination with H2 hardware, is capable of solving hard optimization problems using minimal quantum resources in the presence of real hardware noise.
Quantinuum researchers expect that these promising results at small scale will encourage the further study of new quantum heuristic algorithms at the relevant scale for real-world optimization problems, which requires a better understanding of their performance under realistic conditions.
Numerical simulations of 256 SK random instances for each problem size from 4 to 29 qubits. Graph A shows the probability of sampling the optimal solution in the IQP circuit, for which the average is 2-0.31n. Graph B shows the enhancement factor compared to 1-layer QAOA, for which the average is 20.23n. These results indicate that Quantinuum’s algorithm has significantly better runtime than 1-layer QAOA.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.
Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.
The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.
Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.
Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.
Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.
To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.
As the authors of the paper state:
“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”
Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.
Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.
These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.
Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.
With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.