Quantinuum researchers are unlocking a more efficient and powerful path towards fault tolerance

We've discovered a technique based on “genon braiding” for the construction of logical gates which could be applied to “high rate” error correcting codes

June 17, 2024
“Computers are useless without error correction”
- Anonymous

If you stumble while walking, you can regain your balance, recover, and keep walking. The ability to function when mistakes happen is essential for daily life, and it permeates everything we do. For example, a windshield can protect a driver even when it’s cracked, and most cars can still drive on a highway if one of the tires is punctured. In fact, most commercially operated planes can still fly with only one engine. All of these things are examples of what engineers call “fault-tolerance”, which just describes a system’s ability to tolerate faults while still functioning.

When building a computer, this is obviously essential. It is a truism that errors will occur (however rarely) in all computers, and a computer that can’t operate effectively and correctly in the presence of faults (or errors) is not very useful. In fact, it will often be wrong - because errors won’t be corrected.

In a new paper from Quantinuum’s world class quantum error correction team, we have made a hugely significant step towards one of the key issues faced in quantum error correction – that of executing fault-tolerant gates with efficient codes. 

This work explores the use of “genon braiding” – a cutting-edge concept in the study of topological phases of matter, motivated by the mathematics of category theory, and both related to and inspired by our prior groundbreaking work on non-Abelian anyons

The native fault tolerant properties of braided toric codes have been theoretically known for some time, and in this newly published work, our team shares how they have discovered a technique based on “genon braiding” for the construction of logical gates which could be applied to “high rate” error correcting codes – meaning codes that require fewer physical qubits per logical qubit, which can have a huge impact on scaling.

Stepping along the path to fault-tolerance

In classical computing, building in fault-tolerance is relatively easy. For starters, the hardware itself is incredibly robust and native error rates are very low. Critically, one can simply copy each bit, so errors are easy to detect and correct. 

Quantum computing is, of course, much trickier with challenges that typically don’t exist in classical computing. First off, the hardware itself is incredibly delicate. Getting a quantum computer to work requires us to control the precise quantum states of single atoms. On top of that, there’s a law of physics called the no cloning theorem, which says that you can’t copy qubits. There are also other issues that arise from the properties that make quantum computing so powerful, such as measurement collapse, that must be considered.

Some very distinguished scientists and researchers have thought about quantum error correcting including Steane, Shor, Calderbank, and Kitaev [9601029.pdf (arxiv.org), 9512032.pdf (arxiv.org), arXiv:quant-ph/9707021v1 9 Jul 1997].  They realized that you can entangle groups of physical qubits, store the relevant quantum information in the entangled state (called a “logical qubit”), and, with a lot of very clever tricks, perform computations with error correction.

There are many different ways to entangle groups of physical qubits, but only some of them allow for useful error detection and correction. This special set of entangling protocols is called a “code” (note that this word is used in a different sense than most readers might think of when they hear “code” - this isn’t “Hello World”). 

A huge amount of effort today goes into “code discovery” in companies, universities, and research labs, and a great deal of that research is quite bleeding-edge. However, discovering codes is only one piece of the puzzle: once a code is discovered, one must still figure out how to compute with it. With any specific way of entangling physical qubits into a logical qubit you need to figure out how to perform gates, how to infer faults, how to correct them, and so on. It’s not easy!

Quantinuum has one of the world’s leading teams working on error correction and has broken new ground many times in recent years, often with industrial or scientific research partners. Among many firsts, we were the first to demonstrate real-time error correction (meaning a fully-fault tolerant QEC protocol). This included many milestones: repeated real-time error correction, the ability to perform quantum "loops" (repeat-until-success protocols), and real-time decoding to determine the corrections during the computation. We were also the first to perform a logical two-qubit gate on a commercial system. In one of our most recent demonstrations, in partnership with Microsoft, we supported the use of error correcting techniques to achieve the first demonstration of highly reliable logical qubits, confirming our place at the forefront of this research – and indeed confirming that Quantinuum’s H2-1 quantum computer was the first – and at present only – device in the world capable of what Microsoft characterizes as Level 2 Resilient quantum computing. 

Introducing new, exotic error correction codes

While codes like the Steane code are well-studied and effective, our team is motivated to investigate new codes with attractive qualities. For example, some codes are “high-rate”, meaning that you get more logical qubits per physical qubit (among other things), which can have a big impact on outlooks for scaling – you might ultimately need 10x fewer physical qubits to perform advanced algorithms like Shor’s. 

Implementing high-rate codes is seductive, but as we mentioned earlier we don’t always know how to compute with them. A particular difficulty with high-rate codes is that you end up sharing physical qubits between logical qubits, so addressing individual logical qubits becomes tricky. There are other difficulties that come from sharing physical qubits between logical qubits, such as performing gates between different logical qubits (scientists call this an “inter-block” gate).

One well-studied method for computing with QEC codes is known as “braiding”. The reason it is called braiding is because you move particles, or “braid” them, around each other, which manipulates logical quantum information. In our new paper, we crack open computing with exotic codes by implementing “genon” braiding. With this, we realize a paradigm for constructing logical gates which we believe could be applied to high-rate codes (i.e. inter-block gates).

What exactly “genons” are, and how they are braided, is beautiful and complex mathematics - but the implementation is surprisingly simple. Inter-block logical gates can be realized through simple relabeling and physical operations. “Relabeling”, i.e. renaming qubit 1 to qubit 2, is very easy in Quantinuum’s QCCD architecture, meaning that this approach to gates will be less noisy, faster, and have less overhead. This is all due to our architectures’ native ability to move qubits around in space, which most other architectures can’t do. 

Using this framework, our team delivered a number of proof-of-principle experiments on the H1-1 system, demonstrating all single qubit Clifford operations using genon braiding. They then performed two kinds of two-qubit logical gates equivalent to CNOTs, proving that genon braiding works in practice and is comparable to other well-researched codes such as the Steane code.

What does this all mean? This work is a great example of co-design – tailoring codes for our specific and unique hardware capabilities. This is part of a larger effort to find fault-tolerant architectures tailored to Quantinuum's hardware. Quantinuum scientist and pioneer of this work, Simon Burton, put it quite succinctly: “Braiding genons is very powerful. Applying these techniques might prove very useful for realizing high-rate codes, translating to a huge impact on how our computers will scale.”

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
December 9, 2024
Q2B 2024: The Roadmap to Quantum Value

At this year’s Q2B Silicon Valley conference from December 10th – 12th in Santa Clara, California, the Quantinuum team will be participating in plenary and case study sessions to showcase our quantum computing technologies. 

Schedule a meeting with us at Q2B

Meet our team at Booth #G9 to discover how Quantinuum is charting the path to universal, fully fault-tolerant quantum computing. 

Join our sessions: 

Tuesday, Dec 10, 10:00 - 10:20am PT

Plenary: Advancements in Fault-Tolerant Quantum Computation: Demonstrations and Results

There is industry-wide consensus on the need for fault-tolerant QPU’s, but demonstrations of these abilities are less common. In this talk, Dr. Hayes will review Quantinuum’s long list of meaningful demonstrations in fault-tolerance, including real-time error correction, a variety of codes from the surface code to exotic qLDPC codes, logical benchmarking, beyond break-even behavior on multiple codes and circuit families.

View the presentation

Wednesday, Dec 11, 4:30 – 4:50pm PT

Keynote: Quantum Tokens: Securing Digital Assets with Quantum Physics

Mitsui’s Deputy General Manager, Quantum Innovation Dept., Corporate Development Div., Koji Naniwada, and Quantinuum’s Head of Cybersecurity, Duncan Jones will deliver a keynote presentation on a case study for quantum in cybersecurity. Together, our organizations demonstrated the first implementation of quantum tokens over a commercial QKD network. Quantum tokens enable three previously incompatible properties: unforgeability guaranteed by physics, fast settlement without centralized validation, and user privacy until redemption. We present results from our successful Tokyo trial using NEC's QKD commercial hardware and discuss potential applications in financial services.

Details on the case study

Wednesday, Dec 11, 5:10 – 6:10pm PT

Quantinuum and Mitsui Sponsored Happy Hour

Join the Quantinuum and Mitsui teams in the expo hall for a networking happy hour. 

events
All
Blog
December 5, 2024
Quantum computing is accelerating

Particle accelerator projects like the Large Hadron Collider (LHC) don’t just smash particles - they also power the invention of some of the world’s most impactful technologies. A favorite example is the world wide web, which was developed for particle physics experiments at CERN.

Tech designed to unlock the mysteries of the universe has brutally exacting requirements – and it is this boundary pushing, plus billion-dollar budgets, that has led to so much innovation. 

For example, X-rays are used in accelerators to measure the chemical composition of the accelerator products and to monitor radiation. The understanding developed to create those technologies was then applied to help us build better CT scanners, reducing the x-ray dosage while improving the image quality. 

Stories like this are common in accelerator physics, or High Energy Physics (HEP). Scientists and engineers working in HEP have been early adopters and/or key drivers of innovations in advanced cancer treatments (using proton beams), machine learning techniques, robots, new materials, cryogenics, data handling and analysis, and more. 

A key strand of HEP research aims to make accelerators simpler and cheaper. A key piece of infrastructure that could be improved is their computing environments. 

CERN itself has said: “CERN is one of the most highly demanding computing environments in the research world... From software development, to data processing and storage, networks, support for the LHC and non-LHC experimental programme, automation and controls, as well as services for the accelerator complex and for the whole laboratory and its users, computing is at the heart of CERN’s infrastructure.” 

With annual data generated by accelerators in excess of exabytes (a billion gigabytes), tens of millions of lines of code written to support the experiments, and incredibly demanding hardware requirements, it’s no surprise that the HEP community is interested in quantum computing, which offers real solutions to some of their hardest problems. 

As the authors of this paper stated: “[Quantum Computing] encompasses several defining characteristics that are of particular interest to experimental HEP: the potential for quantum speed-up in processing time, sensitivity to sources of correlations in data, and increased expressivity of quantum systems... Experiments running on high-luminosity accelerators need faster algorithms; identification and reconstruction algorithms need to capture correlations in signals; simulation and inference tools need to express and calculate functions that are classically intractable.”

The HEP community’s interest in quantum computing is growing. In recent years, their scientists have been looking carefully at how quantum computing could help them, publishing a number of papers discussing the challenges and requirements for quantum technology to make a dent (here’s one example, and here’s the arXiv version). 

In the past few months, what was previously theoretical is becoming a reality. Several groups published results using quantum machines to tackle something called “Lattice Gauge Theory”, which is a type of math used to describe a broad range of phenomena in HEP (and beyond). Two papers came from academic groups using quantum simulators, one using trapped ions and one using neutral atoms. Another group, including scientists from Google, tackled Lattice Gauge Theory using a superconducting quantum computer. Taken together, these papers indicate a growing interest in using quantum computing for High Energy Physics, beyond simple one-dimensional systems which are more easily accessible with classical methods such as tensor networks.

We have been working with DESY, one of the world’s leading accelerator centers, to help make quantum computing useful for their work. DESY, short for Deutsches Elektronen-Synchrotron, is a national research center that operates, develops, and constructs particle accelerators, and is part of the worldwide computer network used to store and analyze the enormous flood of data that is produced by the LHC in Geneva.  

Our first publication from this partnership describes a quantum machine learning technique for untangling data from the LHC, finding that in some cases the quantum approach was indeed superior to the classical approach. More recently, we used Quantinuum System Model H1 to tackle Lattice Gauge Theory (LGT), as it’s a favorite contender for quantum advantage in HEP.

Lattice Gauge Theories are one approach to solving what are more broadly referred to as “quantum many-body problems”. Quantum many-body problems lie at the border of our knowledge in many different fields, such as the electronic structure problem which impacts chemistry and pharmaceuticals, or the quest for understanding and engineering new material properties such as light harvesting materials; to basic research such as high energy physics, which aims to understand the fundamental constituents of the universe,  or condensed matter physics where our understanding of things like high-temperature superconductivity is still incomplete.

The difficulty in solving problems like this – analytically or computationally – is that the problem complexity grows exponentially with the size of the system. For example, there are 36 possible configurations of two six-faced dice (1 and 1 or 1 and 2 or 1and 3... etc), while for ten dice there are more than sixty million configurations.

Quantum computing may be very well-suited to tackling problems like this, due to a quantum processor’s similar information density scaling – with the addition of a single qubit to a QPU, the information the system contains doubles. Our 56-qubit System Model H2, for example, can hold quantum states that require 128*(2^56) bits worth of information to describe (with double-precision numbers) on a classical supercomputer, which is more information than the biggest supercomputer in the world can hold in memory.

The joint team made significant progress in approaching the Lattice Gauge Theory corresponding to Quantum Electrodynamics, the theory of light and matter. For the first time, they were able study the full wavefunction of a two-dimensional confining system with gauge fields and dynamical matter fields on a quantum processor. They were also able to visualize the confining string and the string-breaking phenomenon at the level of the wavefunction, across a range of interaction strengths.

The team approached the problem starting with the definition of the Hamiltonian using the InQuanto software package, and utilized the reusable protocols of InQuanto to compute both projective measurements and expectation values. InQuanto allowed the easy integration of measurement reduction techniques and scalable error mitigation techniques. Moreover, the emulator and hardware experiments were orchestrated by the Nexus online platform.

In one section of the study, a circuit with 24 qubits and more than 250 two-qubit gates was reduced to a smaller width of 15 qubits thanks our unique qubit re-use and mid-circuit measurement automatic compilation implemented in TKET.

This work paves the way towards using quantum computers to study lattice gauge theories in higher dimensions, with the goal of one day simulating the full three-dimensional Quantum Chromodynamics theory underlying the nuclear sector of the Standard Model of particle physics. Being able to simulate full 3D quantum chromodynamics will undoubtedly unlock many of Nature’s mysteries, from the Big Bang to the interior of neutron stars, and is likely to lead to applications we haven’t yet dreamed of. 

technical
All