While it sounds like a gadget from Star Trek, teleportation is real – and it is happening at Quantinuum. In a new paper published in Science, our researchers moved a quantum state from one place to another without physically moving it through space - and they accomplished this feat with fault-tolerance and excellent fidelity. This is an important milestone for the whole quantum computing community and the latest example of Quantinuum achieving critical milestones years ahead of expectations.
While it seems exotic, teleportation is a critical piece of technology needed for full scale fault-tolerant quantum computing, and it is used widely in algorithm and architecture design. In addition to being essential on its own, teleportation has historically been used to demonstrate a high level of system maturity. The protocol requires multiple qubits, high-fidelity state-preparation, single-qubit operations, entangling operations, mid-circuit measurement, and conditional operations, making it an excellent system-level benchmark.
Our team was motivated to do this work by the US Government Intelligence Advance Research Projects Activity (IARPA), who set a challenge to perform high fidelity teleportation with the goal of advancing the state of science in universal fault-tolerant quantum computing. IARPA further specified that the entanglement and teleportation protocols must also maintain fault-tolerance, a key property that keeps errors local and correctable.
These ambitious goals required developing highly complex systems, protocols, and other infrastructure to enable exquisite control and operation of quantum-mechanical hardware. We are proud to have accomplished these goals ahead of schedule, demonstrating the flexibility, performance, and power of Quantinuum’s Quantum Charge Coupled Device (QCCD) architecture.
Quantinuum’s demonstration marks the first time that an arbitrary quantum state has been teleported at the logical level (using a quantum error correcting code). This means that instead of teleporting the quantum state of a single physical qubit we have teleported the quantum information encoded in an entangled set of physical qubits, known as a logical qubit. In other words, the collective state of a bunch of qubits is teleported from one set of physical qubits to another set of physical qubits. This is, in a sense, a lot closer to what you see in Star Trek – they teleport the state of a big collection of atoms at once. Except for the small detail of coming up with a pile of matter with which to reconstruct a human body...
This is also the first demonstration of a fully fault-tolerant version of the state teleportation circuit using real-time quantum error correction (QEC), decoding mid-circuit measurement of syndromes and implementing corrections during the protocol. It is critical for computers to be able to catch and correct any errors that happen along the way, and this is not something other groups have managed to do in any robust sense. In addition, our team achieved the result with high fidelity (97.5%±0.2%), providing a powerful demonstration of the quality of our H2 quantum processor, Powered by Honeywell.
Our team also tried several variations of logical teleportation circuits, using both transversal gates and lattice surgery protocols, thanks to the flexibility of our QCCD architecture. This marks the first demonstration of lattice surgery performed on a QEC code.
Lattice surgery is a strategy for implementing logical gates that requires only 2D nearest-neighbor interactions, making it especially useful for architectures whose qubit locations are fixed, such as superconducting architectures. QCCD and other technologies that do not have fixed qubit positioning might employ this method, another method, or some mixture. We are fortunate that our QCCD architecture allows us to explore the use of different logical gating options so that we can optimize our choices for experimental realities.
While the teleportation demonstration is the big result, sometimes it is the behind-the-scenes technology advancements that make the big differences. The experiments in this paper were designed at the logical level using an internally developed logical-level programming language dubbed Simple Logical Representation (SLR). This is yet another marker of our system’s maturity – we are no longer programming at the physical level but have instead moved up one “layer of abstraction”. Someday, all quantum algorithms will need to be run on the logical level with rounds of quantum error correction. This is a markedly different state than most present experiments, which are run on the physical level without quantum error correction. It is also worth noting that these results were generated using the software stack available to any user of Quantinuum’s H-Series quantum computers, and these experiments were run alongside customer jobs – underlining that these results are commercial performance, not hero data on a bespoke system.
Ironically, a key element in this work is our ability to move our qubits through space the “normal” way - this capacity gives us all-to-all connectivity, which was essential for some of the QEC protocols used in the complex task of fault-tolerant logical teleportation. We recently demonstrated solutions to the sorting problem and wiring problem in a new 2D grid trap, which will be essential as we scale up our devices.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is excited to announce the release of InQuanto™ v4.0, the latest version of our advanced quantum computational chemistry software. This update introduces new features and significant performance improvements, designed to help both industry and academic researchers accelerate their computational chemistry work.
If you're new to InQuanto or want to learn more about how to use it, we encourage you to explore our documentation.
InQuanto v4.0 is being released alongside Quantinuum Nexus, our cloud-based platform for quantum software. Users with Nexus access can leverage the `inquanto-nexus` extension to, for example, take advantage of multiple available backends and seamless cloud storage.
In addition, InQuanto v4.0 introduces enhancements that allow users to run larger chemical simulations on quantum computers. Systems can be easily imported from classical codes using the widely supported FCIDUMP file format. These fermionic representations are then efficiently mapped to qubit representations, benefiting from performance improvements in InQuanto operators. For systems too large for quantum hardware experiments, users can now utilize the new `inquanto-cutensornet` extension to run simulations via tensor networks.
These updates enable users to compile and execute larger quantum circuits with greater ease, while accessing powerful compute resources through Nexus.
InQuanto v4.0 is fully integrated with Quantinuum Nexus via the `inquanto-nexus` extension. This integration allows users to easily run experiments across a range of quantum backends, from simulators to hardware, and access results stored in Nexus cloud storage.
Results can be annotated for better searchability and seamlessly shared with others. Nexus also offers the Nexus Lab, which provides a preconfigured Jupyter environment for compiling circuits and executing jobs. The Lab is set up with InQuanto v4.0 and a full suite of related software, enabling users to get started quickly.
The `inquanto.mappings` submodule has received a significant performance enhancement in InQuanto v4.0. By integrating a set of operator classes written in C++, the team has increased the performance of the module past that of other open-source packages’ equivalent methods.
Like any other Python package, InQuanto can benefit from delegating tasks with high computational overhead to compiled languages such as C++. This prescription has been applied to the qubit encoding functions of the `inquanto.mappings` submodule, in which fermionic operators are mapped to their qubit operator equivalents. One such qubit encoding scheme is the Jordan-Wigner (JW) transformation. With respect to JW encoding as a benchmarking task, the integration of C++ operator classes in InQuanto v4.0 has yielded an execution time speed-up of two and a half times that of open-source competitors (Figure 1).
This is a substantial increase in performance that all users will benefit from. InQuanto users will still interact with the familiar Python classes such as `FermionOperator` and `QubitOperator` in v4.0. However, when the `mappings` module is called, the Python operator objects are converted to C++ equivalents and vice versa before and after the qubit encoding procedure (Figure 2). With future total integration of C++ operator classes, we can remove the conversion step and push the performance of the `mappings` module further. Tests, once again using the JW mappings scheme, show a 40 times execution time speed-up as compared to open-source competitors (Figure 1).
Efficient classical pre-processing implementations such as this are a crucial step on the path to quantum advantage. As the number of physical qubits available on quantum computers increases, so will the size and complexity of the physical systems that can be simulated. To support this hardware upscaling, computational bottlenecks including those associated with the classical manipulation of operator objects must be alleviated. Aside from keeping pace with hardware advancements, it is important to enlarge the tractable system size in situations that do not involve quantum circuit execution, such as tensor network circuit simulation and resource estimation.
Users with access to GPU capabilities can now take advantage of tensor networks to accelerate simulations in InQuanto v4.0. This is made possible by the `inquanto-cutensornet` extension, which interfaces InQuanto with the NVIDIA® cuTensorNet library. The `inquanto-cutensornet` extension leverages the `pytket-cutensornet` library, which facilitates the conversion of `pytket` circuits into tensor networks to be evaluated using the NVIDIA® cuTensorNet library. This extension increases the size limit of circuits that can be simulated for chemistry applications. Future work will seek to integrate this functionality with our Nexus platform, allowing InQuanto users to employ the extension without requiring access to their own local GPU resources.
Here we demonstrate the use of the `CuTensorNetProtocol` passed to a VQE experiment. For the sake of brevity, we use the `get_system` method of `inquanto.express` to swiftly define the system, in this case H2 using the STO-3G basis-set.
from inquanto.algorithms import AlgorithmVQE
from inquanto.ansatzes import FermionSpaceAnsatzUCCD
from inquanto.computables import ExpectationValue, ExpectationValueDerivative
from inquanto.express import get_system
from inquanto.mappings import QubitMappingJordanWigner
from inquanto.minimizers import MinimizerScipy
from inquanto.extensions.cutensornet import CuTensorNetProtocol
fermion_hamiltonian, space, state = get_system("h2_sto3g.h5")
qubit_hamiltonian = fermion_hamiltonian.qubit_encode()
ansatz = FermionSpaceAnsatzUCCD(space, state, QubitMappingJordanWigner())
expectation_value = ExpectationValue(ansatz, qubit_hamiltonian)
gradient_expression = ExpectationValueDerivative(
ansatz, qubit_hamiltonian, ansatz.free_symbols_ordered()
)
protocol_tn = CuTensorNetProtocol()
vqe_tn = (
AlgorithmVQE(
objective_expression=expectation_value,
gradient_expression=gradient_expression,
minimizer=MinimizerScipy(),
initial_parameters=ansatz.state_symbols.construct_zeros(),
)
.build(protocol_objective=protocol_tn, protocol_gradient=protocol_tn)
.run()
)
print(vqe_tn.generate_report()["final_value"])
# -1.136846575472054
The inherently modular design of InQuanto allows for the seamless integration of new extensions and functionality. For instance, a user can simply modify existing code using `SparseStatevectorProtocol` to enable GPU acceleration through `inquanto-cutensornet`. It is worth noting that the extension is also compatible with shot-based simulation via the `CuTensorNetShotsBackend` provided by `pytket-cutensornet`.
“Hybrid quantum-classical supercomputing is accelerating quantum computational chemistry research,” said Tim Costa, Senior Director at NVIDIA®. “With Quantinuum’s InQuanto v4.0 platform and NVIDIA’s cuQuantum SDK, InQuanto users now have access to unique tensor-network-based methods, enabling large-scale and high-precision quantum chemistry simulations.”
As demonstrated by our `inquanto-pyscf` extension, we want InQuanto to easily interface with classical codes. In InQuanto v4.0, we have clarified integration with other classical codes such as Gaussian and Psi4. All that is required is an FCIDUMP file, which is a common output file for classical codes. An FCIDUMP file encodes all the one and two electron integrals required to set up a CI Hamiltonian. Users can bring their system from classical codes by passing an FCIDUMP file to the `FCIDumpRestricted` class and calling the `to_ChemistryRestrictedIntegralOperator` method or its unrestricted counterpart, depending on how they wish to treat spin. The resulting InQuanto operator object can be used within their workflow as they usually would.
Users can experiment with TKET’s latest circuit compilation tools in a straightforward manner with InQuanto v4.0. Circuit compilation now only occurs within the `inquanto.protocols` module. This allows users to define which optimization passes to run before and/or after the backend specific defaults, all in one line of code. Circuit compilation is a crucial step in all InQuanto workflows. As such, this structural change allows us to cleanly integrate new functionality through extensions such as `inquanto-nexus` and `inquanto-cutensornet`. Looking forward, beyond InQuanto v4.0, this change is a positive step towards bringing quantum error correction to InQuanto.
InQuanto v4.0 pushes the size of the chemical systems that a user can simulate on quantum computers. Users can import larger, carefully constructed systems from classical codes and encode them to optimized quantum circuits. They can then evaluate these circuits on quantum backends with `inquanto-nexus` or execute them as tensor networks using `inquanto-cutensornet`. We look forward to seeing how our users leverage InQuanto v4.0 to demonstrate the increasing power of quantum computational chemistry. If you are curious about InQuanto and want to read further, our initial release blogpost is very informative or visit the InQuanto website.
If you are interested in trying InQuanto, please request access or a demo at inquanto@quantinuum.com
In July, we proudly introduced the Beta version of Quantinuum Nexus, our comprehensive quantum computing platform. Designed to provide an exceptional experience for managing, storing, and executing quantum workflows, Nexus offers unparalleled integration with Quantinuum’s software and hardware.
Before July, Nexus was primarily available to our internal researchers and software developers, who leveraged it to drive groundbreaking work leading to notable publications such as:
Following our initial announcement, we invited external users to experience Nexus for the first time.
We selected quantum computing researchers and developers from both industry and academia to help accelerate their work and advance scientific discovery. Participants included teams from diverse sectors such as automotive and energy technology, as well as research groups from universities and national laboratories worldwide. We also welcomed scientists and software developers from other quantum computing companies to explore areas ranging from physical system simulation to the foundations of quantum mechanics.
The feedback and results from our trial users have been exceptional. But don’t just take our word for it—read on to hear directly from some of them:
At Unitary Fund, we leveraged Nexus to study a foundational question about quantum mechanics. The quantum platform allowed us to scale experimental violations of Local Friendliness to a more significant regime than had been previously tested. Using Nexus, we encoded Extended Wigner’s Friend Scenarios (EWFS) into quantum circuits, running them on state-of-the-art simulators and quantum processors. Nexus enabled us to scale the complexity of these circuits efficiently, helping us validate LF violations at larger and larger scales. The platform's reliability and advanced capabilities were crucial to extending our results, from simulating smaller systems to experimentally demonstrating LF violations on quantum hardware. Nexus has empowered us to deepen our research and contribute to foundational quantum science.
Read the publication here: Towards violations of Local Friendliness with quantum computers.
At Phasecraft we are designing algorithms for near term quantum devices, identifying the most impactful experiments to run on the best available hardware. We recently implemented a series of circuits to simulate the time dynamics of a materials model with a novel layout, exploiting the all-to-all connectivity of the H series. Nexus integrated easily with our software stack, allowing us to easily deploy our circuits and collect data, with impressive results. We first tested that our in-house software could interface with Nexus smoothly using the syntax checker as well as the suite of functionality available through the Nexus API. We then tested our circuits on the H1 emulator, and it was straightforward to switch from the emulator to the hardware when we were ready. Overall, we found nexus a straightforward interface, especially when compared with alternative quantum hardware access models.
Quantum Software Lab, University of Edinburgh
In this project, we performed the largest verified measurement-based quantum computation to date, up to the size of 52 vertices, which was made possible by the Nexus system. The protocol requires complex operations intermingling classical and quantum information. In particular, Nexus allows us to demonstrate our protocol that requires complex decisions for every measurement shot on every node in the graph: circuit branching, mid-circuit measurement and reset, and incorporating fresh randomness. Such requirements are difficult to deliver on most quantum computer frameworks as they are far from conventional gate-based BQP computations; however, Nexus can!
Read the publication here: On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit
We are thrilled to announce that after these successes, Nexus is coming out of beta access for full launch. We can’t wait to offer Nexus to our customers to enable ground-breaking scientific work, powered by Quantinuum.
Register your interest in gaining access to the best full-stack quantum computing platform, today!
Our team is making progress on the path towards “non-Abelian” quantum computing, which promises both fault tolerance and significant resource savings.
Computing with non-Abelian anyons, which are a type of quasiparticle, is sought after as it offers an enticing alternative to some of the biggest challenges in mainstream quantum computing. Estimates vary, but some scientists have calculated that some of the trickiest parts, like T gates and magic states distillation, can take up to 90% of the computer’s resources (when running something such as Shor’s algorithm). The non-abelian approach to quantum computing could mitigate this issue.
In a new paper in collaboration with Harvard and CalTech, our team is one step closer to realizing fault-tolerant non-Abelian quantum computing. This paper is a follow-up to our recent work published in Nature, where we demonstrated control of non-Abelian anyons. This marks a key step toward non-Abelian computing, and we are the only company who has achieved this. Additionally, we are the only company offering commercially-available mid-circuit measurement and feed-forward capabilities, which will be vital as we advance our research in this area.
In this paper, our team prepared the ground state of the “Z3” toric code – meaning this special state of matter was prepared in qutrit (3 states) Hilbert space. Before now, topological order has only been prepared in qubit (2 states) Hilbert spaces. This allowed them to explore the effect of defects in the lattice (for the experts, this was the “parafermion” defect as well as the “charge-conjugation” defect. They then entangled two pairs of charge conjugation defects, making a Bell pair.
All these accomplishments are critical steppingstones towards the non-Abelian anyons of the “S3” toric code, which is the non-Abelian approach that promises both huge resource savings previously discussed because it (unlike most quantum error correction codes) provides a universal gate set. The high-fidelity preparation our team accomplished in this paper suggests that we are very close to achieving a universal topological gate set, which will be an incredible “first” in the quantum computing community.
This work is another feather in our cap in terms of quantum error correction (QEC) research, a field we are leaders in. We recently demonstrated a significant reduction in circuit error rates in collaboration with Microsoft, we performed high fidelity and fault-tolerant teleportation of logical qubits, and we independently demonstrated the first implementation of the Quantum Fourier Transform with error correction. We’ve surpassed the “break-even” point multiple times, recently doing so entangling 4 logical qubits in a non-local code. This latest work in non-Abelian QEC is yet another crucial milestone for the community that we have rigorously passed before anyone else.
This world-class work is enabled by the native flexibility of our Quantum Charge Coupled Device (QCCD) architecture and its best-in-class fidelity. Our world-leading hardware combined with our team of over 350 PhD scientists means that we have the capacity to efficiently investigate a large variety of error correcting codes and fault-tolerant methods, while supporting our partners to do the same. Fault tolerance is one of the most critical challenges our industry faces, and we are proud to be leading the way towards large scale, fault-tolerant quantum computing.