Introducing InQuanto v4.0

The latest version of our advanced quantum computational chemistry platform

November 19, 2024

Quantinuum is excited to announce the release of InQuanto™ v4.0, the latest version of our advanced quantum computational chemistry software. This update introduces new features and significant performance improvements, designed to help both industry and academic researchers accelerate their computational chemistry work.

If you're new to InQuanto or want to learn more about how to use it, we encourage you to explore our documentation.

InQuanto v4.0 is being released alongside Quantinuum Nexus, our cloud-based platform for quantum software. Users with Nexus access can leverage the `inquanto-nexus` extension to, for example, take advantage of multiple available backends and seamless cloud storage.

In addition, InQuanto v4.0 introduces enhancements that allow users to run larger chemical simulations on quantum computers. Systems can be easily imported from classical codes using the widely supported FCIDUMP file format. These fermionic representations are then efficiently mapped to qubit representations, benefiting from performance improvements in InQuanto operators. For systems too large for quantum hardware experiments, users can now utilize the new `inquanto-cutensornet` extension to run simulations via tensor networks.

These updates enable users to compile and execute larger quantum circuits with greater ease, while accessing powerful compute resources through Nexus.

Quantinuum Nexus 

InQuanto v4.0 is fully integrated with Quantinuum Nexus via the `inquanto-nexus` extension. This integration allows users to easily run experiments across a range of quantum backends, from simulators to hardware, and access results stored in Nexus cloud storage.

Results can be annotated for better searchability and seamlessly shared with others. Nexus also offers the Nexus Lab, which provides a preconfigured Jupyter environment for compiling circuits and executing jobs. The Lab is set up with InQuanto v4.0 and a full suite of related software, enabling users to get started quickly. 

Enhanced Operator Performance

The `inquanto.mappings` submodule has received a significant performance enhancement in InQuanto v4.0. By integrating a set of operator classes written in C++, the team has increased the performance of the module past that of other open-source packages’ equivalent methods. 

Like any other Python package, InQuanto can benefit from delegating tasks with high computational overhead to compiled languages such as C++. This prescription has been applied to the qubit encoding functions of the `inquanto.mappings` submodule, in which fermionic operators are mapped to their qubit operator equivalents. One such qubit encoding scheme is the Jordan-Wigner (JW) transformation. With respect to JW encoding as a benchmarking task, the integration of C++ operator classes in InQuanto v4.0 has yielded an execution time speed-up of two and a half times that of open-source competitors (Figure 1).


Figure 1. Performance comparison of Jordan Wigner (JW) operator mappings for LiH molecule in several basis sets of increasing size. 

This is a substantial increase in performance that all users will benefit from. InQuanto users will still interact with the familiar Python classes such as `FermionOperator` and `QubitOperator` in v4.0. However, when the `mappings` module is called, the Python operator objects are converted to C++ equivalents and vice versa before and after the qubit encoding procedure (Figure 2). With future total integration of C++ operator classes, we can remove the conversion step and push the performance of the `mappings` module further. Tests, once again using the JW mappings scheme, show a 40 times execution time speed-up as compared to open-source competitors (Figure 1).


Figure 2. Representation of the conversion step from Python objects to C++ objects in the qubit encoding processes handled by the `inquanto.mappings` submodule in InQuanto v4.0.

Efficient classical pre-processing implementations such as this are a crucial step on the path to quantum advantage. As the number of physical qubits available on quantum computers increases, so will the size and complexity of the physical systems that can be simulated. To support this hardware upscaling, computational bottlenecks including those associated with the classical manipulation of operator objects must be alleviated. Aside from keeping pace with hardware advancements, it is important to enlarge the tractable system size in situations that do not involve quantum circuit execution, such as tensor network circuit simulation and resource estimation.

Leveraging Tensor Networks

Users with access to GPU capabilities can now take advantage of tensor networks to accelerate simulations in InQuanto v4.0. This is made possible by the `inquanto-cutensornet` extension, which interfaces InQuanto with the NVIDIA® cuTensorNet library. The `inquanto-cutensornet` extension leverages the `pytket-cutensornet` library, which facilitates the conversion of `pytket` circuits into tensor networks to be evaluated using the NVIDIA® cuTensorNet library. This extension increases the size limit of circuits that can be simulated for chemistry applications. Future work will seek to integrate this functionality with our Nexus platform, allowing InQuanto users to employ the extension without requiring access to their own local GPU resources.

Here we demonstrate the use of the `CuTensorNetProtocol` passed to a VQE experiment. For the sake of brevity, we use the `get_system` method of `inquanto.express` to swiftly define the system, in this case H2 using the STO-3G basis-set.

from inquanto.algorithms import AlgorithmVQE
from inquanto.ansatzes import FermionSpaceAnsatzUCCD
from inquanto.computables import ExpectationValue, ExpectationValueDerivative
from inquanto.express import get_system
from inquanto.mappings import QubitMappingJordanWigner
from inquanto.minimizers import MinimizerScipy
from inquanto.extensions.cutensornet import CuTensorNetProtocol


fermion_hamiltonian, space, state = get_system("h2_sto3g.h5")
qubit_hamiltonian = fermion_hamiltonian.qubit_encode()
ansatz = FermionSpaceAnsatzUCCD(space, state, QubitMappingJordanWigner())
expectation_value = ExpectationValue(ansatz, qubit_hamiltonian)
gradient_expression = ExpectationValueDerivative(
	ansatz, qubit_hamiltonian, ansatz.free_symbols_ordered()
)


protocol_tn = CuTensorNetProtocol()
vqe_tn = (
	AlgorithmVQE(
		objective_expression=expectation_value,
		gradient_expression=gradient_expression,
		minimizer=MinimizerScipy(),
		initial_parameters=ansatz.state_symbols.construct_zeros(),
	)		
	.build(protocol_objective=protocol_tn, protocol_gradient=protocol_tn)
	.run()
)
print(vqe_tn.generate_report()["final_value"])

# -1.136846575472054

The inherently modular design of InQuanto allows for the seamless integration of new extensions and functionality. For instance, a user can simply modify existing code using `SparseStatevectorProtocol` to enable GPU acceleration through `inquanto-cutensornet`. It is worth noting that the extension is also compatible with shot-based simulation via the `CuTensorNetShotsBackend` provided by `pytket-cutensornet`.

“Hybrid quantum-classical supercomputing is accelerating quantum computational chemistry research,” said Tim Costa, Senior Director at NVIDIA®. “With Quantinuum’s InQuanto v4.0 platform and NVIDIA’s cuQuantum SDK, InQuanto users now have access to unique tensor-network-based methods, enabling large-scale and high-precision quantum chemistry simulations.”

Classical Code Interface

As demonstrated by our `inquanto-pyscf` extension, we want InQuanto to easily interface with classical codes. In InQuanto v4.0, we have clarified integration with other classical codes such as Gaussian and Psi4. All that is required is an FCIDUMP file, which is a common output file for classical codes. An FCIDUMP file encodes all the one and two electron integrals required to set up a CI Hamiltonian. Users can bring their system from classical codes by passing an FCIDUMP file to the `FCIDumpRestricted` class and calling the `to_ChemistryRestrictedIntegralOperator` method or its unrestricted counterpart, depending on how they wish to treat spin. The resulting InQuanto operator object can be used within their workflow as they usually would.

Exposing TKET Compilation

Users can experiment with TKET’s latest circuit compilation tools in a straightforward manner with InQuanto v4.0. Circuit compilation now only occurs within the `inquanto.protocols` module. This allows users to define which optimization passes to run before and/or after the backend specific defaults, all in one line of code. Circuit compilation is a crucial step in all InQuanto workflows. As such, this structural change allows us to cleanly integrate new functionality through extensions such as `inquanto-nexus` and `inquanto-cutensornet`. Looking forward, beyond InQuanto v4.0, this change is a positive step towards bringing quantum error correction to InQuanto.

Conclusion

InQuanto v4.0 pushes the size of the chemical systems that a user can simulate on quantum computers. Users can import larger, carefully constructed systems from classical codes and encode them to optimized quantum circuits. They can then evaluate these circuits on quantum backends with `inquanto-nexus` or execute them as tensor networks using `inquanto-cutensornet`. We look forward to seeing how our users leverage InQuanto v4.0 to demonstrate the increasing power of quantum computational chemistry. If you are curious about InQuanto and want to read further, our initial release blogpost is very informative or visit the InQuanto website.

How to Access InQuanto

If you are interested in trying InQuanto, please request access or a demo at inquanto@quantinuum.com

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
April 11, 2025
Quantinuum’s partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.  

Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.  

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes.  Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.  

partnership
All
technical
All
Blog
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a pilot combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against “store now, decrypt-later” (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST’s SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.  

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All
Blog
March 28, 2025
Being Useful Now – Quantum Computers and Scientific Discovery

The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.

Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.

Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.

Understanding magnetism

Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.

To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.

As the authors of the paper state:

“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”

Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.  

Gaining material insights

Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.

These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.  

Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.

With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.

technical
All