By Kevin Jackson for Quantinuum
The world is a lot smaller than it was in the previous century – or even in the previous decade.
Customers are now accustomed to a wide variety of products that can be delivered from distributors all over the globe. While this is a great opportunity for suppliers, it also presents a challenge in the form of supply chain, logistics, routing, and optimization.
How can distribution companies continue to serve the needs of their customers in the most efficient and effective way possible? This may seem like a simple question, but it becomes a complex computational problem when trying to account for all the variables that can occur within a distribution network.
What’s more, classical computers simply cannot adequately perform this optimization calculation in real-world scenarios. Because of the number of variables, the math just runs too slow.
That said, new work in quantum computing has shown promise in applications within the optimization field. To that end, we interviewed Quantinuum’s Megan Kohagen and Dr. Mattia Fiorentini to better understand how quantum computing could to optimized logistics and supply chains.
Kohagen and Fiorentini are participating in a panel about quantum computing at Manifest: The Future of Logistics conference this week in Las Vegas, Nevada.
When it comes to optimization it is all about maximizing or minimizing an objective. A good example is a company that delivers goods and products but owns a limited number of trucks. To improve efficiency and minimize costs, the company needs to maximize the number of objects its trucks carry and identify the shortest routes between deliveries.
“You have all these constraints, you have your objective, and you’ve got to make decisions,” said Kohagen, an optimization researcher. “The decisions end up being things like how many goods you are going to send between your distribution centers and your stores? Each of these optimization problems, even if you consider them separately, are hard problems. The technical term is that they’re (non-deterministic polynomial)-hard because you’re dealing with discrete things. For example, I can’t send half a T-shirt to my customer. I can only operate with whole integers.”
Fiorentini expands on this: “In logistics, we cannot leave anyone behind. If we need to deliver medicine, we cannot decide ‘the villages with less than 1,000 people – we don’t supply them. There are too many, and not enough people live there’. That’s not an option in today’s world.”
Today’s computers struggle to solve these NP-hard optimization problems because of the number of ever-changing variables. Consider the much-studied Traveling Salesperson Problem, which is often used to illustrate the complexity of managing logistics, routing, and supply chains.
This is a theoretical problem where a machine is tasked with finding the shortest route between an identified list of cities that a “salesperson” must visit before returning to the point of origin. This problem is simple enough with only a few cities, but it becomes exponentially harder as more locations are added, and other factors such as multiple salespeople, weather conditions, and unforeseen events arise.
Classical computers can solve this theoretical problem for a single salesperson traveling to thousands of cities. But this scenario is not realistic, and this is where classical computers begin to struggle.
“The Traveling Salesperson Problem is not very representative of what happens in the real world,” Kohagen said. “For example, with online ordering so prevalent, a retailer has orders coming in constantly. They must determine how to efficiently retrieve those items from the warehouse, pack them into the trucks, and then transport them to the customers.”
Today, the reality of an extended supply chain or distribution network is beyond what the best classical computer can solve. Quantum computers harness unique properties of quantum physics that enable them to examine all possible answers simultaneously and then concentrate the probable output of the computation onto the best option.
“Classical is a great technology, but it doesn’t cut it here,” said Fiorentini, who develops and tests quantum algorithms for optimization. “Quantum is the best alternative to classical computing that we have.“
Optimization problems have long been viewed as “killer applications” for quantum computing and research conducted by Fiorentini, Kohagen and others has begun to prove that.
Fiorentini believes it is time for decision makers to explore and invest in quantum-enabled solutions for optimization problems. “There are two decisions here for decision makers,” he said. “We either give up on the problem and say, ‘we’ll just do the best we can with a classical solution, or we start allocating a budget for really developing quantum technology.”
Quantum computing is expanding rapidly and is poised to disrupt markets such as optimization. A similar situation is the power sector, which is experiencing major disruptions due to innovations in renewable energy resources, energy storage, and regulatory reform.
Every technology has a tipping point, and all signs point to a current trend in quantum computing moving rapidly to real-world applications in optimization.
“There are a lot of algorithms being developed for optimization right now,” said Kohagen. “If you really want to advance your business with quantum methods for logistics or supply chain, this is the moment to start. Decision makers must act quickly. Those that seize the opportunity before others will have a major advantage over those who lag.”
“As quantum computers continue to scale in computational power, they’ll be able to handle increasingly complex calculations to deliver more robust and optimized supply chain solutions,” said Tony Uttley, President and COO of Quantinuum.
“We’re excited by the acceleration of our System Model H1 technologies, Powered by Honeywell. Measured in terms of qubit number as well as quantum volume, we’re meeting our commitment to increase performance by a factor of 10X each year,” he said. “Alongside other revolutionary advances such as real-time error correction, we look forward to supporting the commercialization of quantum applications that will change the way logistical challenges are met. In fact, within the coming few months we’ll be sharing more exciting news regarding our latest technological achievements.”
Want to learn about our work to develop quantum-enabled optimization solutions for companies? Contact our experts
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.
Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.
The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.
Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.
Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.
Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.
To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.
As the authors of the paper state:
“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”
Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.
Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.
These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.
Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.
With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.